Synthesis and Functionalization of Allenes by Direct Pd-Catalyzed Organolithium Cross-Coupling
Dr. Jaime Mateos-Gil
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
These authors contributed equally to this work.
Search for more papers by this authorAnirban Mondal
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
These authors contributed equally to this work.
Search for more papers by this authorDr. Marta Castiñeira Reis
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Dr. Ben L. Feringa
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
Search for more papers by this authorDr. Jaime Mateos-Gil
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
These authors contributed equally to this work.
Search for more papers by this authorAnirban Mondal
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
These authors contributed equally to this work.
Search for more papers by this authorDr. Marta Castiñeira Reis
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Dr. Ben L. Feringa
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
Search for more papers by this authorAbstract
A palladium-catalyzed cross-coupling between in situ generated allenyl/propargyl-lithium species and aryl bromides to yield highly functionalized allenes is reported. The direct and selective formation of allenic products preventing the corresponding isomeric propargylic product is accomplished by the choice of SPhos or XPhos based Pd catalysts. The methodology avoids the prior transmetalation to other transition metals or reverse approaches that required prefunctionalization of substrates with leaving groups, resulting in a fast and efficient approach for the synthesis of tri- and tetrasubstituted allenes. Experimental and theoretical studies on the mechanism show catalyst control of selectivity in this allene formation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913132-sup-0001-misc_information.pdf6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Krause, A. S. Hashmi, in Modern Allene Chemistry, Wiley-VCH, Weinheim, 2004.
- 2P. Rivera-Fuentes, F. Diederich, Angew. Chem. Int. Ed. 2012, 51, 2818–2828; Angew. Chem. 2012, 124, 2872–2882.
- 3X. Pu, X. Qi, J. M. Ready, J. Am. Chem. Soc. 2009, 131, 10364–10365.
- 4
- 4aA. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 2004, 43, 1196–1216; Angew. Chem. 2004, 116, 1216–1236;
- 4bS. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074–3112; Angew. Chem. 2012, 124, 3128–3167.
- 5
- 5aF. López, J. L. Mascareñas, Chem. Eur. J. 2011, 17, 418–428;
- 5bF. López, J. L. Mascareñas, Chem. Soc. Rev. 2014, 43, 2904–2915;
- 5cB. Alcaide, P. Almendros, C. Aragoncillo, Chem. Soc. Rev. 2014, 43, 3106–3135;
- 5dJ. L. Mascareñas, I. Varela, F. López, Acc. Chem. Res. 2019, 52, 465–479.
- 6
- 6aP. Koschker, B. Breit, Acc. Chem. Res. 2016, 49, 1524–1536;
- 6bA. P. Pulis, K. Yeung, D. J. Procter, Chem. Sci. 2017, 8, 5240–5247.
- 7
- 7aS. Yu, S. Ma, Chem. Commun. 2011, 47, 5384–5418;
- 7bR. K. Neff, D. E. Frantz, ACS Catal. 2014, 4, 519–528;
- 7cJ. Ye, S. Ma, Org. Chem. Front. 2014, 1, 1210–1224.
- 8T. Satoh, H. Kaneta, A. Matsushima, M. Yajima, Tetrahedron Lett. 2009, 50, 6280–6285.
- 9M. Brossat, M.-P. Heck, C. Mioskowski, J. Org. Chem. 2007, 72, 5938–5941.
- 10
- 10aN. Nella, E. Parker, J. Hitce, P. Larini, R. Jazzar, O. Baudoin, Chem. Eur. J. 2014, 20, 13272–13278;
- 10bR. K. Neff, D. E. Frantz, J. Am. Chem. Soc. 2018, 140, 17428–17432;
- 10cW. Lv, Y. Chen, Z. Zhao, S. Wen, G. Cheng, Org. Lett. 2019, 20, 7995–7998.
- 11
- 11aY. Huang, J. del Pozo, S. Torker, A. H. Hoveyda, J. Am. Chem. Soc. 2018, 140, 2643–2655;
- 11bI. Scheipers, C. Muck-Lichtenfeld, A. Studer, Angew. Chem. Int. Ed. 2019, 58, 6545–6548; Angew. Chem. 2019, 131, 6616–6620;
- 11cB. Wang, X. Wang, X. Yin, W. Yu, Y. Liao, J. Ye, M. Wang, J. Liao, Org. Lett. 2019, 21, 3913–3917;
- 11dN. J. Adamson, H. Jeddi, S. J. Malcolmson, J. Am. Chem. Soc. 2019, 141, 8574–8583;
- 11eL. Bayeh-Romero, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 13788–13794.
- 12
- 12aR. H. Kleijn, J. Meijer, E. A. Oostveen, P. Vermeer, J. Organomet. Chem. 1982, 224, 399–405;
- 12bI. Singh Aidhen, R. Braslau, Synth. Commun. 1994, 24, 789–799;
- 12cC.-W. Huang, M. Shanmugasundaram, H.-M. Chang, C.-H. Cheng, Tetrahedron 2003, 59, 3635–3641;
- 12dD. R. Williams, A. A. Shah, Chem. Commun. 2010, 46, 4297–4299;
- 12eK. Radkowski, G. Seidel, A. Fürstner, Chem. Lett. 2011, 40, 950–952.
- 13
- 13aK. Lee, D. Seomoon, P. H. Lee, Angew. Chem. Int. Ed. 2002, 41, 3901–3903;
10.1002/1521-3773(20021018)41:20<3901::AID-ANIE3901>3.0.CO;2-S CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 4057–4059;
- 13bP. Quinio, C. Francois, A. Escribano Cuesta, A. K. Steib, F. Achrainer, H. Zipse, K. Karaghiosoff, P. Knochel, Org. Lett. 2015, 17, 1010–1013;
- 13cP. H. Lee, J. Mo, D. Kang, D. Eom, C. Park, C.-H. Lee, Y. M. Jung, H. Hwang, J. Org. Chem. 2011, 76, 312–315.
- 14
- 14aS. Ma, A. Zhang, J. Org. Chem. 1998, 63, 9601–9604;
- 14bS. Ma, Q. He, Angew. Chem. Int. Ed. 2004, 43, 988–990; Angew. Chem. 2004, 116, 1006–1008;
- 14cS. Ma, Q. He, X. Zhang, J. Org. Chem. 2005, 70, 3336–3338;
- 14dJ. Zhao, Y. Liu, Q. He, Y. Li, S. Ma, Chem. Eur. J. 2009, 15, 11361–11372.
- 15I. Marek, Z. Rappoport, in The chemistry of organolithium compounds, Wiley, Chichester, 2004.
- 16
- 16aM. Giannerini, M. Fañanás-Mastral, B. L. Feringa, Nat. Chem. 2013, 5, 667;
- 16bV. Hornillos, M. Giannerini, C. Vila, M. Fañanás-Mastral, B. L. Feringa, Org. Lett. 2013, 15, 5114–5117;
- 16cM. Giannerini, V. Hornillos, C. Vila, M. Fañanás-Mastral, B. L. Feringa, Angew. Chem. Int. Ed. 2013, 52, 13329–13333; Angew. Chem. 2013, 125, 13571–13575;
- 16dC. Vila, V. Hornillos, M. Giannerini, M. Fañanás-Mastral, B. L. Feringa, Chem. Eur. J. 2014, 20, 13078–13083;
- 16eV. Hornillos, M. Giannerini, C. Vila, M. Fañanás-Mastral, B. L. Feringa, Chem. Sci. 2015, 6, 1394–1398;
- 16fD. Heijnen, J.-B. Gualtierotti, V. Hornillos, B. L. Feringa, Chem. Eur. J. 2016, 22, 3991–3995;
- 16gZ. Jia, Q. Liu, X.-S. Peng, H. N. C. Wong, Nat. Commun. 2016, 7, 10614;
- 16hX.-L. Lu, M. Shannon, X.-S. Peng, H. N. C. Wong, Org. Lett. 2019, 21, 2546–2549;
- 16iG. Dilauro, A. Francesca Quivelli, P. Vitale, V. Capriati, F. M. Perna, Angew. Chem. Int. Ed. 2019, 58, 1799–1802; Angew. Chem. 2019, 131, 1813–1816.
- 17
- 17aJ. Y. Becker, J. Klein, J. Organomet. Chem. 1978, 157, 1–6;
- 17bH. J. Reich, J. E. Holladay, J. D. Mason, W. H. Sikorski, J. Am. Chem. Soc. 1995, 117, 12137–12150;
- 17cH. J. Reich, J. L. Thompson, Org. Lett. 2000, 2, 783–786;
- 17dN. Alouane, K. Bentayeb, E. Vrancken, H. Gérard, P. Mangeney, Chem. Eur. J. 2009, 15, 45–48.
- 18S. Ma, A. Zhang, Y. Yu, W. Xia, J. Org. Chem. 2000, 65, 2287–2291.
- 19J. Zhao, Y. Yu, S. Ma, Chem. Eur. J. 2010, 16, 74–80.
- 20In our previous work on the coupling of alkenyllithium species (ref. [16f]), two representative examples of allenyllithium species were reported, finding problems of selectivity in most of the attempted products.
- 21As reported by S. Ma and Q. He (ref. [14b]), we experienced some problems of reproducibility in the coupling reaction of 4a when nBuLi or tBuLi were used as lithiation agent. We found that the use of freshly distilled solvents and alkynes was critical for the correct performance of the reaction, observing a dramatical drop in both conversion and selectivity when commercial alkynes were directly used without previous purification.
- 22As determined by 1H and 13C-NMR.
- 23Reactions proceed cleanly, however, product 5 a–5 j isomerized and decomposed at room temperature. Fast purification and storing under inert atmosphere in freezer was required.
- 24
- 24aR. J. Armstrong, W. Niwetmarin, V. K. Aggarwal, Org. Lett. 2017, 19, 2762–2765;
- 24bS. Namirembe, J. P. Morken, Chem. Soc. Rev. 2019, 48, 3464–3474.
- 25Product 5 j was found to completly isomerized to 6 j at r.t, while purification.
- 26A similar experiment using Pd(dba)2/XPhos as catalyst and 0.1 equiv of carbazole was performed to check possible influence of the amine released from the catalyst as source of the found selectivity. However, the same selectivity (65:35) with a moderate conversion was found.
- 27
- 27aC. Amatore, A. Jutand, F. Khalil, M. A. M′Barki, L. Mottier, Organometallics 1993, 12, 3168–3178;
- 27bI. J. S. Fairlamb, A. R. Kapdi, A. F. Lee, Org. Lett. 2004, 6, 4435–4438;
- 27cI. J. S. Fairlamb, Org. Biomol. Chem. 2008, 6, 3645–3656.
- 28Significant effects, improving, or diminishing, on the performance of Pd catalyst by the presence of dba have been reported. However, to the best of our knowledge, there is no previous reports in the literature regarding a remarkable effect in the chemo or regioselectivity of a reaction.
- 29
- 29aY. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101;
- 29bF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 30C. Grandclaudon, V. Michelet, P. Y. Toullec, Org. Lett. 2016, 18, 676–679.
- 31
- 31aE. Alcalde, N. Mesquida, S. Lopez-Pérez, J. Frigola, R. Merce, J. Med. Chem. 2009, 52, 675–687;
- 31bN. J. Clegg, S. Paruthiyil, D. C. Leitman, T. S. Scanlan, J. Med. Chem. 2005, 48, 5989–6003.
- 32K. Semba, M. Shinomiya, T. Fujihara, J. Terao, Y. Tsuji, Chem. Eur. J. 2013, 19, 7125–7132.
- 33S. Xu, C.-T. Lee, H. Rao, E.-i. Negishi, Adv. Synth. Catal. 2011, 353, 2981–2987.
- 34Regio- and stereochemistry of the products 9 and 10 was determined by 1D- and 2D NOESY NMR experiments (see Supporting Information), resulting in retention of the starting configuration of the double bond during the formation of 10.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.