Urine Metabolic Fingerprints Encode Subtypes of Kidney Diseases
Jing Yang
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRan Wang
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorMengji Zhang
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
Search for more papers by this authorJingyang Niu
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
Search for more papers by this authorChunde Bao
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorNan Shen
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorMin Dai
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorQiang Guo
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorProf. Qian Wang
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
Search for more papers by this authorQin Wang
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorCorresponding Author
Qiong Fu
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Kun Qian
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
Search for more papers by this authorJing Yang
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRan Wang
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorMengji Zhang
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
Search for more papers by this authorJingyang Niu
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
Search for more papers by this authorChunde Bao
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorNan Shen
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorMin Dai
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorQiang Guo
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorProf. Qian Wang
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
Search for more papers by this authorQin Wang
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorCorresponding Author
Qiong Fu
Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Kun Qian
School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030 P. R. China
Search for more papers by this authorAbstract
Metabolic fingerprints of biofluids encode diverse diseases and particularly urine detection offers complete non-invasiveness for diagnostics of the future. Present urine detection affords unsatisfactory performance and requires advanced materials to extract molecular information, due to the limited biomarkers and high sample complexity. Herein, we report plasmonic polymer@Ag for laser desorption/ionization mass spectrometry (LDI-MS) and sparse-learning-based metabolic diagnosis of kidney diseases. Using only 1 μL of urine without enrichment or purification, polymer@Ag afforded urine metabolic fingerprints (UMFs) by LDI-MS in seconds. Analysis by sparse learning discriminated lupus nephritis from various other non-lupus nephropathies and controls. We combined UMFs with urine protein levels (UPLs) and constructed a new diagnostic model to characterize subtypes of kidney diseases. Our work guides urine-based diagnosis and leads to new personalized analytical tools for other diseases.
Conflict of interest
The authors declare competing financial interest. The authors have filed patents for both the technology and the use of the technology to analyze biological samples.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913065-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Pardee, A. A. Green, M. K. Takahashi, D. Braff, G. Lambert, J. W. Lee, T. Ferrante, D. Ma, N. Donghia, M. Fan, N. M. Daringer, I. Bosch, D. M. Dudley, D. H. O'Connor, L. Gehrke, J. J. Collins, Cell 2016, 165, 1255–1266;
- 1bZ. W. Lai, R. Kelly, T. Winans, I. Marchena, A. Shadakshari, J. Yu, M. Dawood, R. Garcia, H. Tily, L. Francis, S. V. Faraone, P. E. Phillips, A. Perl, Lancet 2018, 391, 1186–1196.
- 2B. D. Humphreys, Science 2018, 360, 709–710.
- 3
- 3aJ. Mayerle, H. Kalthoff, R. Reszka, B. Kamlage, E. Peter, B. Schniewind, S. G. Maldonado, C. Pilarsky, C. D. Heidecke, P. Schatz, M. Distler, J. A. Scheiber, U. M. Mahajan, F. U. Weiss, R. Grutzmann, M. M. Lerch, Gut 2018, 67, 128–137;
- 3bR. Zhang, B. A. Le, W. Xu, K. Guo, X. M. Sun, H. Y. Su, L. Huang, J. Y. Huang, T. Shen, T. Liao, Y. Y. Liang, J. X. J. Zhang, H. J. Dai, K. Qian, Small Methods 2019, 3, 1800474;
- 3cS. Y. Sun, R. M. Wang, Y. D. Huang, J. L. Xu, K. Yao, W. S. Liu, Y. M. Cao, K. Qian, Small 2019, 15, 1902441;
- 3dC. Rejeeth, X. C. Pang, R. Zhang, W. Xu, X. M. Sun, B. Liu, J. T. Lou, J. J. Wan, H. C. Gu, W. Yan, K. Qian, Nano Res. 2018, 11, 68–79.
- 4W. S. Liu, S. Y. Sun, Y. D. Huang, R. M. Wang, J. L. Xu, X. Y. Liu, K. Qian, Chem. Asian J. 2019, https://doi.org/10.1002/asia.201901512.
- 5B. I. Rini, S. C. Campbell, JAMA Oncol. 2015, 1, 212–213.
- 6B. Ljungberg, K. Bensalah, S. Canfield, S. Dabestani, F. Hofmann, M. Hora, M. A. Kuczyk, T. Lam, L. Marconi, A. S. Merseburger, P. Mulders, T. Powles, M. Staehler, A. Volpe, A. Bex, Eur. Urol. 2015, 67, 913–924.
- 7
- 7aZ. Y. Liu, D. Pouli, C. A. Alonzo, A. Varone, S. Karaliota, K. P. Quinn, K. Munger, K. P. Karalis, I. Georgakoudi, Sci. Adv. 2018, 4, 14;
- 7bK. Birsoy, R. Possemato, F. K. Lorbeer, E. C. Bayraktar, P. Thiru, B. Yucel, T. Wang, W. W. Chen, C. B. Clish, D. M. Sabatini, Nature 2014, 508, 108–112;
- 7cX. M. Sun, J. J. Wan, K. Qian, Small Methods 2017, 1, 201700196.
- 8
- 8aL. Berod, C. Friedrich, A. Nandan, J. Freitag, S. Hagemann, K. Harmrolfs, A. Sandouk, C. Hesse, C. N. Castro, H. Bahres, S. K. Tschirner, N. Gorinski, M. Gohmert, C. T. Mayer, J. Huehn, E. Ponimaskin, W. R. Abraham, R. Muller, M. Lochner, T. Sparwasser, Nat. Med. 2014, 20, 1327–1333;
- 8bX. M. Sun, L. Huang, R. Zhang, W. Xu, J. Y. Huang, D. D. Gurav, V. Vedarethinam, R. P. Chen, J. T. Lou, Q. Wang, J. J. Wan, K. Qian, ACS Cent. Sci. 2018, 4, 223–229.
- 9E. Ferrannini, E. Muscelli, S. Frascerra, S. Baldi, A. Mari, T. Heise, U. C. Broedl, H. J. Woerle, J. Clin. Invest. 2014, 124, 499–508.
- 10
- 10aH. Link, T. Fuhrer, L. Gerosa, N. Zamboni, U. Sauer, Nat. Methods 2015, 12, 1091–1097;
- 10bY. C. Liu, C. K. Chiang, H. T. Chang, Y. F. Lee, C. C. Huang, Adv. Funct. Mater. 2011, 21, 4448–4455;
- 10cW. Y. Chen, S. M. Li, A. S. Kulkarni, L. Huang, J. Cao, K. Qian, J. J. Wan, Biotechnol. J. 2019, https://doi.org/10.1002/biot.201900262.
- 11M. van de Waterbeemd, S. Tamara, K. L. Fort, E. Damoc, V. Franc, P. Bieri, M. Itten, A. Makarov, N. Ban, A. J. R. Heck, Nat. Commun. 2018, 9, 12.
- 12R. A. Samson, C. M. Visagie, J. Houbraken, S. B. Hong, V. Hubka, C. H. W. Klaassen, G. Perrone, K. A. Seifert, A. Susca, J. B. Tanney, J. Varga, S. Kocsube, G. Szigeti, T. Yaguchi, J. C. Frisvad, Stud. Mycol. 2014, 78, 141–173.
- 13
- 13aJ. Wu, X. Wei, J. R. Gan, L. Huang, T. Shen, J. T. Lou, B. H. Liu, J. X. J. Zhang, K. Qian, Adv. Funct. Mater. 2016, 26, 4016–4025;
- 13bB. Liu, Y. L. Li, H. Wan, L. Wang, W. Xu, S. J. Zhu, Y. Y. Liang, B. Zhang, J. T. Lou, H. J. Dai, K. Qian, Adv. Funct. Mater. 2016, 26, 7994–8002.
- 14
- 14aH. Tsugawa, T. Cajka, T. Kind, Y. Ma, B. Higgins, K. Ikeda, M. Kanazawa, J. VanderGheynst, O. Fiehn, M. Arita, Nat. Methods 2015, 12, 523–526;
- 14bU. Aslam, S. Chavez, S. Linic, Nat. Nanotechnol. 2017, 12, 1000–1005;
- 14cY. D. Zhu, H. Pick, N. Gasilova, X. Y. Li, T. E. Lin, H. P. Laeubli, A. Zippelius, P. C. Ho, H. H. Girault, Chem 2019, 5, 1318–1336;
- 14dL. W. Zhang, A. Vertes, Angew. Chem. Int. Ed. 2018, 57, 4466–4477; Angew. Chem. 2018, 130, 4554–4566.
- 15G. S. Hong, J. Z. Wu, J. T. Robinson, H. L. Wang, B. Zhang, H. J. Dai, Nat. Commun. 2012, 3, 9.
- 16J. B. Cui, Y. J. Li, L. Liu, L. Chen, J. Xu, J. W. Ma, G. Fang, E. B. Zhu, H. Wu, L. X. Zhao, L. Y. Wang, Y. Huang, Nano Lett. 2015, 15, 6295–6301.
- 17J. H. Lee, S. Kang, M. Ahn, H. Jang, D. H. Min, Small 2018, 14, 7.
- 18L. Huang, J. J. Wan, X. Wei, Y. Liu, J. Y. Huang, X. M. Sun, R. Zhang, D. D. Gurav, V. Vedarethinam, Y. Li, R. P. Chen, K. Qian, Nat. Commun. 2017, 8, 220.
- 19
- 19aG. Cavallo, A. Al Ouahabi, L. Oswald, L. Charles, J. F. Lutz, J. Am. Chem. Soc. 2016, 138, 9417–9420;
- 19bD. G. Sharp, J. W. Beard, J. Biol. Chem. 1950, 185, 247–253.
- 20
- 20aX. Wei, Z. Liu, X. Jin, L. Huang, D. D. Gurav, X. Sun, B. Liu, J. Ye, K. Qian, Anal. Chim. Acta 2017, 950, 147–155;
- 20bW. K. Shu, Y. Wang, C. Liu, R. X. Li, C. C. Pei, W. H. Lou, S. H. Lin, W. Di, J. J. Wan, Small Methods 2019, 3, 1900469.
- 21V. Vedarethinam, L. Huang, W. Xu, R. Zhang, D. D. Gurav, X. M. Sun, J. Yang, R. P. Chen, K. Qian, Small 2019, 15, 1803051.
- 22
- 22aS. Wu, L. X. Qian, L. Huang, X. M. Sun, H. Y. Su, D. D. Gurav, M. W. Jiang, W. Cai, K. Qian, Nano-Micro Lett. 2018, 10, 52;
- 22bH. Su, T. Liu, L. Huang, J. Huang, J. Cao, H. Yang, J. Ye, J. Liu, K. Qian, J. Mater. Chem. B 2018, 6, 7280–7287.
- 23L. Huang, D. D. Gurav, S. Wu, W. Xu, V. Vedarethinam, J. Yang, H. Su, X. Wan, Y. Fang, B. Shen, C.-A. H. Price, E. Velliou, J. Liu, K. Qian, Matter 2019, https://doi.org/10.1016/j.matt.2019.08.014.
- 24
- 24aJ. B. Song, X. Y. Yang, Z. Yang, L. S. Lin, Y. J. Liu, Z. J. Zhou, Z. Y. Shen, G. C. Yu, Y. L. Dai, O. Jacobson, J. Munasinghe, B. Yung, G. J. Teng, X. Y. Chen, ACS Nano 2017, 11, 6102–6113;
- 24bD. Hudry, I. A. Howard, R. Popescu, D. Gerthsen, B. S. Richards, Adv. Mater. 2019, 31, 1900623.
- 25M. M. Khamis, D. J. Adamko, A. El-Aneed, Mass Spectrom. Rev. 2017, 36, 115–134.
- 26
- 26aZ. H. Zhang, A. Castello, Ann. Transl. Med. 2017, 5, 7;
- 26bA. S. Hess, J. R. Hess, Transfusion 2018, 58, 1580–1582.
- 27J. Boccard, D. N. Rutledge, Anal. Chim. Acta 2013, 769, 30–39.
- 28
- 28aJ. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma, IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227;
- 28bS. Ryali, T. Chen, K. Supekar, V. Menon, NeuroImage 2012, 59, 3852–3861.
- 29P. Luo, P. Yin, R. Hua, Y. Tan, Z. Li, G. Qiu, Z. Yin, X. Xie, X. Wang, W. Chen, L. Zhou, X. Wang, Y. Li, H. Chen, L. Gao, X. Lu, T. Wu, H. Wang, J. Niu, G. Xu, Hepatology 2018, 67, 662–675.
- 30L. Shen, S. Kim, Y. Qi, M. Inlow, S. Swaminathan, K. Nho, J. Wan, S. L. Risacher, L. M. Shaw, J. Q. Trojanowski, M. W. Weiner, A. J. Saykin, Adni, Multimodal Brain Image Anal. 2011, 7012, 27–34.
- 31
- 31aD. W. Cook, S. C. Rutan, Anal. Chem. 2017, 89, 8405–8412;
- 31bJ. J. Jones, B. E. Wilcox, R. W. Benz, N. Babbar, G. Boragine, T. Burrell, E. B. Christie, L. J. Croner, P. Cun, R. Dillon, S. N. Kairs, A. Kao, R. Preston, S. R. Schreckengaust, H. Skor, W. F. Smith, J. You, W. D. Hillis, D. B. Agus, J. E. Blume, Clin. Colorectal Cancer 2016, 15, 186–194.
- 32R. F. van Vollenhoven, B. H. Hahn, G. C. Tsokos, C. L. Wagner, P. Lipsky, Z. Touma, V. P. Werth, R. M. Gordon, B. Zhou, B. Hsu, M. Chewier, M. Triebel, J. L. Jordan, S. Rose, Lancet 2018, 392, 1330–1339.
- 33K. S. Wiles, C. Nelson-Piercy, K. Bramham, Nat. Rev. Nephrol. 2018, 14, 165–184.
- 34L. H. Wang, Y. Zeng, A. G. Shen, Y. C. Fu, L. W. Zeng, J. M. Hu, RSC Adv. 2016, 6, 86025.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.