Boosting Hydrogen Oxidation Activity of Ni in Alkaline Media through Oxygen-Vacancy-Rich CeO2/Ni Heterostructures
Fulin Yang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXi Bao
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorPeng Li
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXuewei Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorProf. Dr. Gongzhen Cheng
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shengli Chen
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Luo
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorFulin Yang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXi Bao
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorPeng Li
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXuewei Wang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorProf. Dr. Gongzhen Cheng
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shengli Chen
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Luo
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 P. R. China
Search for more papers by this authorAbstract
The search for highly efficient platinum group metal (PGM)-free electrocatalysts for the hydrogen oxidation reaction (HOR) in alkaline electrolytes remains a great challenge in the development of alkaline exchange membrane fuel cells (AEMFCs). Here we report the synthesis of an oxygen-vacancy-rich CeO2/Ni heterostructure and its remarkable HOR performance in alkaline media. Experimental results and density functional theory (DFT) calculations indicate the electron transfer between CeO2 and Ni could lead to thermoneutral adsorption free energies of H* (ΔGH*). This, together with the promoted OH* adsorption strength derived from the abundance of oxygen vacancies in the CeO2 species, contributes to the excellent HOR performance with the exchange current density and mass activity of 0.038 mA cmNi−2 and 12.28 mA mgNi−1, respectively. This presents a new benchmark for PGM-free alkaline HOR and opens a new avenue toward the rational design of high-performance PGM-free electrocatalysts for alkaline HOR.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201908194-sup-0001-misc_information.pdf2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Z. Jacobson, W. G. Colella, D. M. Golden, Science 2005, 308, 1901–1905;
- 1bO. Z. Sharaf, M. F. Orhan, Renewable Sustainable Energy Rev. 2014, 32, 810–853;
- 1cY. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, Appl. Energy 2011, 88, 981–1007.
- 2
- 2aH. A. Gasteiger, N. M. Markovic, Science 2009, 324, 48–49;
- 2bB. P. Setzler, Z. Zhuang, J. A. Wittkopf, Y. Yan, Nat. Nanotechnol. 2016, 11, 1020–1025;
- 2cZ. F. Pan, L. An, T. S. Zhao, Z. K. Tang, Prog. Energy Combust. Sci. 2018, 66, 141–175.
- 3
- 3aW. Sheng, H. A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, B 1529–B1536;
- 3bJ. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, H. A. Gasteiger, Energy Environ. Sci. 2014, 7, 2255–2260.
- 4
- 4aZ. Zhuang, S. A. Giles, J. Zheng, G. R. Jenness, S. Caratzoulas, D. G. Vlachos, Y. Yan, Nat. Commun. 2016, 7, 10141;
- 4bF. Yang, X. Bao, Y. Zhao, X. Wang, G. Cheng, W. Luo, J. Mater. Chem. A 2019, 7, 10936–10941;
- 4cW. Sheng, A. P. Bivens, M. Myint, Z. Zhuang, R. V. Forest, Q. Fang, J. G. Chen, Y. Yan, Energy Environ. Sci. 2014, 7, 1719–1724;
- 4dO. V. Cherstiouk, P. A. Simonov, A. G. Oshchepkov, V. I. Zaikovskii, T. Y. Kardash, A. Bonnefont, V. N. Parmon, E. R. Savinova, J. Electroanal. Chem. 2016, 783, 146–151;
- 4eW. Ni, A. Krammer, C.-S. Hsu, H. M. Chen, A. Schugler, X. Hu, Angew. Chem. Int. Ed. 2019, 58, 7445–7449; Angew. Chem. 2019, 131, 7523–7527;
- 4fA. G. Oshchepkov, A. Bonnefont, S. N. Pronkin, O. V. Cherstiouk, C. Ulhaq-Bouillet, V. Papaefthimiou, V. N. Parmon, E. R. Savinova, J. Power Sources 2018, 402, 447–452;
- 4gY. Yang, X. Sun, G. Han, X. Liu, X. Zhang, Y. Sun, M. Zhang, Z. Cao, Y. Sun, Angew. Chem. Int. Ed. 2019, 58, 10644–10649; Angew. Chem. 2019, 131, 10754–10759;
- 4hL. Gao, Y. Wang, H. Li, Q. Li, N. Ta, L. Zhuang, Q. Fu, X. Bao, Chem. Sci. 2017, 8, 5728–5734.
- 5
- 5aY. Cong, B. Yi, Y. Song, Nano Energy 2018, 44, 288–303;
- 5bE. S. Davydova, S. Mukerjee, F. Jaouen, D. R. Dekel, ACS Catal. 2018, 8, 6665–6690.
- 6
- 6aD. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. van der Vliet, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Nat. Chem. 2013, 5, 300–306;
- 6bM. T. M. Koper, Nat. Chem. 2013, 5, 255–256.
- 7
- 7aX. Chen, I. T. McCrum, K. A. Schwarz, M. J. Janik, M. T. Koper, Angew. Chem. Int. Ed. 2017, 56, 15025–15029; Angew. Chem. 2017, 129, 15221–15225;
- 7bI. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastian-Pascual, V. Climent, J. M. Feliu, M. T. M. Koper, Nat. Energy 2017, 2, 17031.
- 8E. Liu, J. Li, L. Jiao, H. T. T. Doan, Z. Liu, Z. Zhao, Y. Huang, K. M. Abraham, S. Mukerjee, Q. Jia, J. Am. Chem. Soc. 2019, 141, 3232–3239.
- 9
- 9aA. G. Oshchepkov, A. Bonnefont, V. A. Saveleva, V. Papaefthimiou, S. Zafeiratos, S. N. Pronkin, V. N. Parmon, E. R. Savinova, Top. Catal. 2016, 59, 1319–1331;
- 9bA. G. Oshchepkov, A. Bonnefont, V. N. Parmon, E. R. Savinova, Electrochim. Acta 2018, 269, 111–118.
- 10D. Floner, C. Lamy, J. M. Leger, Surf. Sci. 1990, 234, 87–97.
- 11
- 11aC. Xu, Z. Tian, P. Shen, S. P. Jiang, Electrochim. Acta 2008, 53, 2610–2618;
- 11bH. A. Miller, A. Lavacchi, F. Vizza, M. Marelli, F. Di Benedetto, F. D'Acapito, Y. Paska, M. Page, D. R. Dekel, Angew. Chem. Int. Ed. 2016, 55, 6004–6007; Angew. Chem. 2016, 128, 6108–6111.
- 12
- 12aB. Beden, D. Floner, J. M. Leger, C. Lamy, Surf. Sci. 1985, 162, 822–829;
- 12bS. A. S. Machado, L. A. Avaca, Electrochim. Acta 1994, 39, 1385–1391.
- 13
- 13aE. S. Davydova, F. D. Speck, M. T. Y. Paul, D. R. Dekel, S. Cherevko, ACS Catal. 2019, 9, 6837–6845;
- 13bD. S. Hall, C. Bock, B. R. MacDougall, J. Electrochem. Soc. 2013, 160, F 235–F243.
- 14
- 14aT. Taniguchi, T. Watanabe, N. Sugiyama, A. K. Subramani, H. Wagata, N. Matsushita, M. Yoshimura, J. Phys. Chem. C 2009, 113, 19789–19793;
- 14bS. Chang, M. Li, Q. Hua, L. Zhang, Y. Ma, B. Ye, W. Huang, J. Catal. 2012, 293, 195–204;
- 14cM. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, Langmuir 2011, 27, 3872–3877.
- 15L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009, 473, 51–87.
- 16N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, J. Phys. Conf. Ser. 2007, 93, 012039.
- 17
- 17aJ. C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2000, 2, 1319–1324;
- 17bX. Wang, Y. Yang, L. Diao, Y. Tang, F. He, E. Liu, C. He, C. Shi, J. Li, J. Sha, S. Ji, P. Zhang, L. Ma, N. Zhao, ACS Appl. Mater. Interfaces 2018, 10, 35145–35153;
- 17cH. A. E. Dole, L. F. Safady, S. Ntais, M. Couillard, E. A. Baranova, J. Catal. 2014, 318, 85–94.
- 18
- 18aJ. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J 23–J26;
- 18bW. Sheng, M. Myint, J. G. Chen, Y. Yan, Energy Environ. Sci. 2013, 6, 1509–1512.
- 19X. P. Wu, X. Q. Gong, Phys. Rev. Lett. 2016, 116, 086102.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.