Cyclopropanation of Terminal Alkenes through Sequential Atom-Transfer Radical Addition/1,3-Elimination†
Nicholas D. C. Tappin
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Search for more papers by this authorWeronika Michalska
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Search for more papers by this authorDr. Simon Rohrbach
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Philippe Renaud
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Search for more papers by this authorNicholas D. C. Tappin
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Search for more papers by this authorWeronika Michalska
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Search for more papers by this authorDr. Simon Rohrbach
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Philippe Renaud
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv.8325251.v1).
Abstract
An operationally simple method to affect an atom-transfer radical addition of commercially available ICH2Bpin to terminal alkenes has been developed. The intermediate iodide can be transformed in a one-pot process into the corresponding cyclopropane upon treatment with a fluoride source. This method is highly selective for the cyclopropanation of unactivated terminal alkenes over non-terminal alkenes and electron-deficient alkenes. Due to the mildness of the procedure, a wide range of functional groups such as esters, amides, alcohols, ketones, and vinylic cyclopropanes are well tolerated.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201907962-sup-0001-misc_information.pdf18.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Sandford, V. K. Aggarwal, Chem. Commun. 2017, 53, 5481–5494.
- 2T. Chinnusamy, K. Feeney, C. G. Watson, D. Leonori, V. K. Aggarwal in Comprehensive Organic Synthesis II (Ed.: ), Elsevier, Amsterdam, 2014, pp. 692–718.
10.1016/B978-0-08-097742-3.00726-6 Google Scholar
- 3R. Armstrong, V. Aggarwal, Synthesis 2017, 49, 3323–3336.
- 4A. J. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev. 2014, 43, 412–443.
- 5C. Valente, M. G. Organ, Boronic Acids, Wiley, Hoboken, 2011, pp. 213–262.
10.1002/9783527639328.ch4 Google Scholar
- 6A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat. Chem. 2014, 6, 584–589.
- 7C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415–3434.
- 8P. Renaud, A. Beauseigneur, A. Brecht-Forster, B. Becattini, V. Darmency, S. Kandhasamy, F. Montermini, C. Ollivier, P. Panchaud, D. Pozzi, et al., Pure Appl. Chem. 2007, 79, 223–233.
- 9P. Renaud in Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds.: ), Wiley, Chichester, 2012.
- 10G. Yan, M. Yang, X. Wu, Org. Biomol. Chem. 2013, 11, 7999–8008.
- 11G. Duret, R. Quinlan, P. Bisseret, N. Blanchard, Chem. Sci. 2015, 6, 5366–5382.
- 12A. Pelter, K. Smith, H. C. Brown, Borane Reagents, Academic Press, London, 1988.
- 13S. J. Geier, C. M. Vogels, S. A. Westcott, Boron Reagents in Synthesis, American Chemical Society, Washington, 2016, pp. 209–225.
10.1021/bk-2016-1236.ch006 Google Scholar
- 14D. G. Hall in Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine (Ed.: ), Wiley, Hoboken, 2011, pp. 1–133.
10.1002/9783527639328.ch1 Google Scholar
- 15T. Ishiyama, N. Miyaura, Boronic Acids, Wiley, 2006, pp. 101–121.
10.1002/3527606548.ch2 Google Scholar
- 16G. Yan, D. Huang, X. Wu, Adv. Synth. Catal. 2018, 360, 1040–1053.
- 17D. S. Matteson, J. Org. Chem. 2013, 78, 10009–10023.
- 18D. S. Matteson in Boron Reagents in Synthesis (Ed.: ), American Chemical Society, Washington, 2016, pp. 173–208.
10.1021/bk-2016-1236.ch005 Google Scholar
- 19C. G. Watson, P. J. Unsworth, D. Leonori, V. K. Aggarwal, Lithium Compounds in Organic Synthesis Wiley-VCH, Weinheim, 2014, pp. 397–422.
10.1002/9783527667512.ch14 Google Scholar
- 20G. Povie, S. R. Suravarapu, M. P. Bircher, M. M. Mojzes, S. Rieder, P. Renaud, Sci. Adv. 2018, 4, eaat 6031.
- 21D. Meyer, P. Renaud, Angew. Chem. Int. Ed. 2017, 56, 10858–10861; Angew. Chem. 2017, 129, 10998–11001.
- 22D. Meyer, E. Vin, B. Wyler, G. Lapointe, P. Renaud, Synlett 2015, 27, 745–748.
- 23G. Povie, A. T. Tran, D. Bonnaffé, J. Habegger, Z. Y. Hu, C. Le Narvor, P. Renaud, Angew. Chem. Int. Ed. 2014, 53, 3894–3898; Angew. Chem. 2014, 126, 3975–3979.
- 24C. Lidong, W. Karin, R. Philippe, Adv. Synth. Catal. 2012, 354, 2070–2070.
- 25C. Lidong, W. Karin, R. Philippe, Adv. Synth. Catal. 2011, 353, 3467–3472.
- 26K. Weidner, A. Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc. 2010, 132, 17511–17515.
- 27A. Beauseigneur, C. Ericsson, P. Renaud, K. Schenk, Org. Lett. 2009, 11, 3778–3781.
- 28A. P. Schaffner, K. Sarkunam, P. Renaud, Helv. Chim. Acta 2006, 89, 2450–2461.
- 29P. Panchaud, P. Renaud, CHIMIA 2004, 58, 232–233.
- 30P. Panchaud, P. Renaud, J. Org. Chem. 2004, 69, 3205–3207.
- 31P. Renaud, P. Renaud, C. Ollivier, P. Panchaud, Angew. Chem. Int. Ed. 2002, 41, 3460–3462;
10.1002/1521-3773(20020916)41:18<3460::AID-ANIE3460>3.0.CO;2-6 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 3610–3612.
- 32C. Ollivier, P. Renaud, Angew. Chem. Int. Ed. 2000, 39, 925–928;
10.1002/(SICI)1521-3773(20000303)39:5<925::AID-ANIE925>3.0.CO;2-M CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 946–949.
- 33A. McCarroll, J. C. Walton, A. McCarroll, R. Nziengui, B. Carboni, Chem. Commun. 1997, 2075–2076.
- 34J. C. Walton, A. J. McCarroll, Q. Chen, B. Carboni, R. Nziengui, J. Am. Chem. Soc. 2000, 122, 5455–5463.
- 35D. P. Curran in Free Radicals in Synthesis and Biology (Ed.: ), Springer, Dordrecht, 1989, pp. 37–51.
- 36J. Byers, Radicals in Organic Synthesis, Wiley-Blackwell, Oxford, 2008, pp. 72–89.
- 37M. S. Kharasch, E. V. Jensen, W. H. Urry, Science 1945, 102, 128–128.
- 38M. S. Kharasch, P. S. Skell, P. Fisher, J. Am. Chem. Soc. 1948, 70, 1055–1059.
- 39D. P. Curran, C. T. Chang, J. Org. Chem. 1989, 54, 3140–3157.
- 40D. P. Curran, M. H. Chen, E. Spletzer, C. M. Seong, C. T. Chang, J. Am. Chem. Soc. 1989, 111, 8872–8878.
- 41H. Zipse, Radicals in Synthesis I (Ed.: ), Springer, Berlin, 2006, pp. 163–189.
10.1007/128_028 Google Scholar
- 42For a related study that appear after submitting our mansucript, see: Q. Huang, J. Michalland, S. Z. Zard, Angew. Chem. Int. Ed. 2019, https://doi.org/10.1002/anie.201906497; Angew. Chem. 2019, https://doi.org/10.1002/ange.201906497.
- 43H. Lopez-Ruiz, S. Z. Zard, Chem. Commun. 2001, 2618–2619.
- 44M. R. Heinrich, L. A. Sharp, S. Z. Zard, Chem. Commun. 2005, 3077.
- 45B. Quiclet-Sire, S. Z. Zard, J. Am. Chem. Soc. 2015, 137, 6762–6765.
- 46N. Guennouni, F. Lhermitte, S. Cochard, B. Carboni, Tetrahedron 1995, 51, 6999–7018.
- 47R. A. Batey, B. Pedram, K. Yong, G. Baquer, Tetrahedron Lett. 1996, 37, 6847–6850.
- 48R. A. Batey, D. V. Smil, Angew. Chem. Int. Ed. 1999, 38, 1798–1800;
10.1002/(SICI)1521-3773(19990614)38:12<1798::AID-ANIE1798>3.0.CO;2-0 CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 1914–1917.10.1002/(SICI)1521-3757(19990614)111:12<1914::AID-ANGE1914>3.0.CO;2-A Web of Science® Google Scholar
- 49R. A. Batey, D. V. Smil, Tetrahedron Lett. 1999, 40, 9183–9187.
- 50K. Takai, N. Shinomiya, M. Ohta, Synlett 1998, 253–254.
- 51T. C. Atack, S. P. Cook, J. Am. Chem. Soc. 2016, 138, 6139–6142.
- 52D. Kurandina, M. Parasram, V. Gevorgyan, Angew. Chem. Int. Ed. 2017, 56, 14212–14216; Angew. Chem. 2017, 129, 14400–14404.
- 53T. den Hartog, J. M. S. Toro, P. Chen, Org. Lett. 2014, 16, 1100–1103.
- 54J. Schmidt, J. Choi, A. T. Liu, M. Slusarczyk, G. C. Fu, Science 2016, 354, 1265–1269.
- 55S.-Z. Sun, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 3622–3625; Angew. Chem. 2018, 130, 3684–3687.
- 56Z. He, P. Trinchera, S. Adachi, J. D. St. Denis, A. K. Yudin, Angew. Chem. Int. Ed. 2012, 51, 11092–11096; Angew. Chem. 2012, 124, 11254–11258.
- 57D. S. Matteson, J. Am. Chem. Soc. 1960, 82, 4228–4233.
- 58D. S. Matteson, A. H. Soloway, D. W. Tomlinson, J. D. Campbell, G. A. Nixon, J. Med. Chem. 1964, 7, 640–643.
- 59S. A. Green, J. L. M. Matos, A. Yagi, R. A. Shenvi, J. Am. Chem. Soc. 2016, 138, 12779–12782.
- 60A. Noble, R. S. Mega, D. Pflästerer, E. L. Myers, V. K. Aggarwal, Angew. Chem. Int. Ed. 2018, 57, 2155–2159; Angew. Chem. 2018, 130, 2177–2181.
- 61C. Shu, R. S. Mega, B. J. Andreassen, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2018, 57, 15430–15434; Angew. Chem. 2018, 130, 15656–15660.
- 62M. Kischkewitz, K. Okamoto, C. Mück-Lichtenfeld, A. Studer, Science 2017, 355, 936–938.
- 63M. Silvi, C. Sandford, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 5736–5739.
- 64N. D. C. Tappin, M. Gnägi-Lux, P. Renaud, Chem. Eur. J. 2018, 24, 11498–11502.
- 65M. F. Hawthorne, J. A. Dupont, J. Am. Chem. Soc. 1958, 80, 5830–5832.
- 66M. F. Hawthorne, J. Am. Chem. Soc. 1960, 82, 1886–1888.
- 67H. C. Brown, S. P. Rhodes, J. Am. Chem. Soc. 1969, 91, 2149–2150.
- 68H. C. Brown, S. P. Rhodes, J. Am. Chem. Soc. 1969, 91, 4306–4307.
- 69H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977–1050.
- 70C. Ollivier, T. Bark, P. Renaud, Synthesis 2000, 1598–1602.
- 71H. L. Goering, S. L. Trenbeath, J. Am. Chem. Soc. 1976, 98, 5016–5017.
- 72M. E. Gurskii, T. V. Potapova, K. L. Cherkasova, Yu. N. Bubnov, Russ. Chem. Bull. 1988, 37, 334–338.
- 73C. D. Roy, H. C. Brown, Monatsh. Chem. 2007, 138, 879–887.
- 74C. D. Roy, H. C. Brown, J. Organomet. Chem. 2007, 692, 784–790.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.