N-Heterocyclic Carbene Catalyzed Concerted Nucleophilic Aromatic Substitution of Aryl Fluorides Bearing α,β-Unsaturated Amides
Kosuke Yasui
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorMiharu Kamitani
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorCorresponding Author
Mamoru Tobisu
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorKosuke Yasui
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorMiharu Kamitani
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorCorresponding Author
Mamoru Tobisu
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorAbstract
Concerted nucleophilic aromatic substitution (CSNAr) has emerged as a powerful mechanistic manifold, in which nucleophilic aromatic substitution can proceed in one step without the need to form a Meisenheimer intermediate. However, all of the CSNAr reactions reported thus far require a stoichiometric strong base or activating reagent, and no catalytic variants have yet been reported. Herein, we report an N-heterocyclic carbene (NHC)-catalyzed intramolecular cyclization of acrylamides that contain a 2-fluorophenyl group on the nitrogen through a CSNAr reaction. By using this catalytic method, it is possible to synthesize an array of quinolin-2-one derivatives, which are common structural motifs in pharmaceuticals and organic materials. DFT calculations unambiguously revealed that this reaction proceeds through the concerted nucleophilic aromatic substitution of aryl fluorides, in which a stereoelectronic σ (Cipso-Cβ)→ σ*(Cipso-F) interaction critically contributes to the stabilization of the transition state for the cyclization.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201907837-sup-0001-misc_information.pdf9.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Brückner in Organic Mechanisms: Reactions, Stereochemistry and Synthesis (Eds.: ), Springer, Berlin, 2010, chap. 2 and chap. 5.
- 2D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443.
- 3F. Terrier, Chem. Rev. 1982, 82, 77.
- 4F. Terrier, Modern Nucleophilic Aromatic Substitution, Wiley, New York, 2013, pp. 1–94.
10.1002/9783527656141.ch1 Google Scholar
- 5G. O. Jones, A. Al Somaa, J. M. O'Brien, H. Albishi, H. A. Al-Megren, A. M. Alabdulrahman, F. D. Alsewailem, J. L. Hedrick, J. E. Rice, H. W. Horn, J. Org. Chem. 2013, 78, 5436.
- 6J. A. Murphy, S. Rohrbach, A. J. Smith, J. H. Pang, D. L. Poole, T. Tuttle, S. Chiba, Angew. Chem. Int. Ed. 2019, https://doi.org/10.1002/anie.201902216; Angew. Chem. 2019, https://doi.org/10.1002/ange.201902216.
- 7
- 7aM. N. Glukhovtsev, R. D. Bach, S. Laiter, J. Org. Chem. 1997, 62, 4036;
- 7bM. Mauksch, S. B. Tsogoeva, Chem. Eur. J. 2019, 25, 7457.
- 8S. E. Fry, N. J. Pienta, J. Am. Chem. Soc. 1985, 107, 6399.
- 9H. Handel, M. A. Pasquini, J. L. Pierre, Tetrahedron 1980, 36, 3205–3208.
- 10D. Y. Ong, C. Tejo, K. Xu, H. Hirao, S. Chiba, Angew. Chem. Int. Ed. 2017, 56, 1840; Angew. Chem. 2017, 129, 1866.
- 11P. Tang, W. Wang, T. Ritter, J. Am. Chem. Soc. 2011, 133, 11482.
- 12C. N. Neumann, J. M. Hooker, T. Ritter, Nature 2016, 534, 369.
- 13C. N. Neumann, T. Ritter, Acc. Chem. Res. 2017, 50, 2822.
- 14S. D. Schimler, M. A. Cismesia, P. S. Hanley, R. D. J. Froese, M. J. Jansma, D. C. Bland, M. S. Sanford, J. Am. Chem. Soc. 2017, 139, 1452.
- 15S. D. Schimler, R. D. J. Froese, D. C. Bland, M. S. Sanford, J. Org. Chem. 2018, 83, 11178–11190.
- 16
- 16aA. Kaga, H. Hayashi, H. Hakamata, M. Oi, M. Uchiyama, R. Takita, S. Chiba, Angew. Chem. Int. Ed. 2017, 56, 11807; Angew. Chem. 2017, 129, 11969;
- 16bJ. Mao, Z. Wang, X. Xu, G. Liu, R. Jiang, H. Guan, Z. Zheng, P. J. Walsh, Angew. Chem. Int. Ed. 2019, 58, 11033; Angew. Chem. 2019, 131, 11149.
- 17X.-W. Liu, C. Zarate, R. Martin, Angew. Chem. Int. Ed. 2019, 58, 2064; Angew. Chem. 2019, 131, 2086.
- 18Y. Mauya, Y. Kawashima, T. Kodama, N. Chatani, M. Tobisu, Synlett 2019, https://doi.org/10.1055/s-0037-1611974.
- 19J. Clayden, J. Dufour, D. M. Grainger, M. Helliwell, J. Am. Chem. Soc. 2007, 129, 7488.
- 20D. J. Leonard, J. W. Ward, J. Clayden, Nature 2018, 562, 105.
- 21A. J. Kirby, Stereoelectronic Effects, Oxford Chemistry Primers, Oxford, 1996, pp. 68–69.
- 22D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307.
- 23M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485.
- 24C. Zhang, J. F. Hooper, D. W. Lupton, ACS Catal. 2017, 7, 2583.
- 25
- 25aX.-Y. Chen, S. Ye, Org. Biomol. Chem. 2013, 11, 7991;
- 25bS.-I. Matsuoka, Y. Ota, A. Washio, A. Katada, K. Ichioka, K. Takagi, M. Suzuki, Org. Lett. 2011, 13, 3722;
- 25cA. T. Biju, M. Padmanaban, N. E. Wurz, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 8412; Angew. Chem. 2011, 123, 8562;
- 25dM. Schedler, N. E. Wurz, C. G. Daniliuc, F. Glorius, Org. Lett. 2014, 16, 3134;
- 25eO. Rajachan, M. Paul, V. R. Yatham, J.-M. Neudorfl, K. Kanokmedhakul, S. Kanokmedhakul, A. Berkessel, Tetrahedron Lett. 2015, 56, 6537;
- 25fY. Nakano, D. W. Lupton, Angew. Chem. Int. Ed. 2016, 55, 3135; Angew. Chem. 2016, 128, 3187;
- 25gL. Scott, Y. Nakano, C. Zhang, D. W. Lupton, Angew. Chem. Int. Ed. 2018, 57, 10299; Angew. Chem. 2018, 130, 10456.
- 26C. Fischer, S. W. Smith, D. A. Powell, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 1472.
- 27Y. Suzuki, T. Toyota, F. Imada, M. Sato, A. Miyashita, Chem. Commun. 2003, 1314.
- 28D. Janssen-Müller, S. Singha, F. Lied, K. Gottschalk, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 6276; Angew. Chem. 2017, 129, 6373.
- 29S. O. Simonetti, E. L. Larghi, T. S. Kaufman, Nat. Prod. Rep. 2016, 33, 1425.
- 30C. B. M. Poulie, L. Bunch, ChemMedChem 2013, 8, 205.
- 31E. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen, Nat. Chem. 2018, 10, 917.
- 32M. Schlosser, R. Ruzziconi, Synthesis 2010, 2111.
- 33C. Xudong, Z. Yifang, C. Yin, Q. Yinli, Y. Minquan, X. Xiangqing, L. Xin, L. Bi-Feng, Z. Liangren, Z. Guisen, J. Med. Chem. 2018, 61, 10017.
- 34M. M. Abelman, T. Oh, L. E. Overman, J. Org. Chem. 1987, 52, 4130.
- 35
- 35aL. Zhao, X. Y. Chen, S. Ye, Z.-X. Wang, J. Org. Chem. 2011, 76, 2733;
- 35bThe first experimental observation of 1,4-addition of NHC: D. Enders, K. Breuer, G. Raabe, J. Runsink, H. J. Teles, J.-P. Melder, K. Ebel, S. Brode, Angew. Chem. Int. Ed. Engl. 1995, 34, 1021; Angew. Chem. 1995, 107, 1119.
- 36Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842.
- 37J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.