Oxygen-Triggered Switchable Polymerization for the One-Pot Synthesis of CO2-Based Block Copolymers from Monomer Mixtures
Yajun Zhao
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yong Wang
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Dr. Xingping Zhou
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Dr. Zhigang Xue
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Dr. Xianhong Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 P. R. China
Search for more papers by this authorXiaolin Xie
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Dr. Rinaldo Poli
Laboratoire de Chimie de Coordination (LCC-CNRS), Université de Toulouse, UPS, INPT, 205, route de Narbonne, 31077 Toulouse, France
Search for more papers by this authorYajun Zhao
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yong Wang
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Dr. Xingping Zhou
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Dr. Zhigang Xue
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Dr. Xianhong Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022 P. R. China
Search for more papers by this authorXiaolin Xie
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorProf. Dr. Rinaldo Poli
Laboratoire de Chimie de Coordination (LCC-CNRS), Université de Toulouse, UPS, INPT, 205, route de Narbonne, 31077 Toulouse, France
Search for more papers by this authorAbstract
Switchable polymerization provides the opportunity to regulate polymer sequence and structure in a one-pot process from mixtures of monomers. Herein we report the use of O2 as an external stimulus to switch the polymerization mechanism from the radical polymerization of vinyl monomers mediated by (Salen)CoIII−R [Salen=N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine; R=alkyl] to the ring-opening copolymerization (ROCOP) of CO2/epoxides. Critical to this process is unprecedented monooxygen insertion into the Co−C bond, as rationalized by DFT calculations, leading to the formation of (Salen)CoIII−O−R as an active species to initiate ROCOP. Diblock poly(vinyl acetate)-b-polycarbonate could be obtained by ROCOP of CO2/epoxides with preactivation of (Salen)Co end-capped poly(vinyl acetate). Furthermore, a poly(vinyl acetate)-b-poly(methyl acrylate)-b-polycarbonate triblock copolymer was successfully synthesized by a (Salen)cobalt-mediated sequential polymerization with an O2-triggered switch in a one-pot process.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201906140-sup-0001-misc_information.pdf2.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Traut, Allosteric Regulatory Enzymes, Springer, New York, 2008.
10.1007/978-0-387-72891-9 Google Scholar
- 2
- 2aC. Chen, Nat. Rev. Chem. 2018, 2, 6–14;
- 2bL. van Dijk, M. J. Tilby, R. Szpera, O. A. Smith, H. A. P. Bunce, S. P. Fletcher, Nat. Rev. Chem. 2018, 2, 0117;
- 2cG. Y. Tonga, Y. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S. T. Kim, Y. C. Yeh, B. Yan, S. Hou, V. M. Rotello, Nat. Chem. 2015, 7, 597;
- 2dB. Lewandowski, G. De Bo, J. W. Ward, M. Papmeyer, S. Kuschel, M. J. Aldegunde, P. M. E. Gramlich, D. Heckmann, S. M. Goldup, D. M. D'Souza, A. E. Fernandes, D. A. Leigh, Science 2013, 339, 189–193.
- 3
- 3aA. J. Teator, D. N. Lastovickova, C. W. Bielawski, Chem. Rev. 2016, 116, 1969–1992;
- 3bA. Vittoria, V. Busico, F. D. Cannavacciuolo, R. Cipullo, ACS Catal. 2018, 8, 5051–5061;
- 3cV. Blanco, D. A. Leigh, V. Marcos, Chem. Soc. Rev. 2015, 44, 5341–5370;
- 3dS. M. Guillaume, E. Kirillov, Y. Sarazin, J. F. Carpentier, Chem. Eur. J. 2015, 21, 7988–8003;
- 3eM. Benaglia, J. Chiefari, Y. K. Chong, G. Moad, E. Rizzardo, S. H. Thang, J. Am. Chem. Soc. 2009, 131, 6914–6915.
- 4
- 4aA. B. Biernesser, K. R. Delle Chiaie, J. B. Curley, J. A. Byers, Angew. Chem. Int. Ed. 2016, 55, 5251–5254; Angew. Chem. 2016, 128, 5337–5340;
- 4bE. M. Broderick, N. Guo, C. S. Vogel, C. Xu, J. Sutter, J. T. Miller, K. Meyer, P. Mehrkhodavandi, P. L. Diaconescu, J. Am. Chem. Soc. 2011, 133, 9278–9281;
- 4cK. R. Delle Chiaie, L. M. Yablon, A. B. Biernesser, G. R. Michalowski, A. W. Sudyn, J. A. Byers, Polym. Chem. 2016, 7, 4675–4681;
- 4dZ. Dai, Y. Cui, C. Chen, J. Wu, Chem. Commun. 2016, 52, 8826–8829.
- 5X. Wang, A. Thevenon, J. L. Brosmer, I. Yu, S. I. Khan, P. Mehrkhodavandi, P. L. Diaconescu, J. Am. Chem. Soc. 2014, 136, 11264–11267.
- 6M. Qi, Q. Dong, D. Wang, J. A. Byers, J. Am. Chem. Soc. 2018, 140, 5686–5690.
- 7W. C. Anderson, J. L. Rhinehart, A. G. Tennyson, B. K. Long, J. Am. Chem. Soc. 2016, 138, 774–777.
- 8
- 8aS. Kernbichl, M. Reiter, F. Adams, S. Vagin, B. Rieger, J. Am. Chem. Soc. 2017, 139, 6787–6790;
- 8bC. Romain, Y. Zhu, P. Dingwall, S. Paul, H. S. Rzepa, A. Buchard, C. K. Williams, J. Am. Chem. Soc. 2016, 138, 4120–4131;
- 8cC. Romain, C. K. Williams, Angew. Chem. Int. Ed. 2014, 53, 1607–1610; Angew. Chem. 2014, 126, 1633–1636;
- 8dY. Zhu, C. Romain, C. K. Williams, J. Am. Chem. Soc. 2015, 137, 12179–12182;
- 8eT. Stößer, C. K. Williams, Angew. Chem. Int. Ed. 2018, 57, 6337–6341; Angew. Chem. 2018, 130, 6445–6450;
- 8fT. Stößer, D. Mulryan, C. K. Williams, Angew. Chem. Int. Ed. 2018, 57, 16893–16897; Angew. Chem. 2018, 130, 17135–17140;
- 8gT. Stößer, T. T. D. Chen, Y. Zhu, C. K. Williams, Philos. Trans. R. Soc. London Ser. A 2018, 376, 20170066;
- 8hT. Stößer, G. S. Sulley, G. L. Gregory, C. K. Williams, Nat. Commun. 2019, 10, 2668.
- 9
- 9aJ. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434–504;
- 9bY. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354–362;
- 9cJ. H. M. Scharfenberg, H. Frey, Adv. Funct. Mater. 2018, 28, 120–157;
- 9dS. J. Poland, D. J. Darensbourg, Green Chem. 2017, 19, 4990–5011.
- 10
- 10aY. Li, Y. Y. Zhang, L. F. Hu, X. H. Zhang, B. Y. Du, J. T. Xu, Prog. Polym. Sci. 2018, 82, 120–157;
- 10bD. J. Darensbourg, Inorg. Chem. Front. 2017, 4, 412–419;
- 10cR. C. Jeske, J. M. Rowley, G. W. Coates, Angew. Chem. Int. Ed. 2008, 47, 6041–6044; Angew. Chem. 2008, 120, 6130–6133.
- 11
- 11aY. Y. Zhang, G. W. Yang, G. P. Wu, Macromolecules 2018, 51, 3640–3646;
- 11bC. D. Cowman, E. Padgett, K. W. Tan, R. Hovden, Y. Gu, N. Andrejevic, D. Muller, G. W. Coates, U. Wiesner, J. Am. Chem. Soc. 2015, 137, 6026–6033;
- 11cG. W. Yang, G. P. Wu, X. Chen, S. Xiong, C. G. Arges, S. Ji, P. F. Nealey, X. B. Lu, D. J. Darensbourg, Z. K. Xu, Nano Lett. 2017, 17, 1233–1239.
- 12Y. Wang, Y. Zhao, Y. Ye, H. Peng, X. Zhou, X. Xie, X. Wang, F. Wang, Angew. Chem. Int. Ed. 2018, 57, 3593–3597; Angew. Chem. 2018, 130, 3655–3659.
- 13
- 13aZ. Q. Qin, C. M. Thomas, S. Lee, G. W. Coates, Angew. Chem. Int. Ed. 2003, 42, 5484–5487; Angew. Chem. 2003, 115, 5642–5645;
- 13bX. B. Lu, D. J. Darensbourg, Chem. Soc. Rev. 2012, 41, 1462–1484;
- 13cW. M. Ren, Z. W. Liu, Y. Q. Wen, R. Zhang, X. B. Lu, J. Am. Chem. Soc. 2009, 131, 11509–11518;
- 13dY. J. Chen, B. J. Wu, F. S. Wang, M. H. Chi, J. T. Chen, C. H. Peng, Macromolecules 2015, 48, 6832–6838.
- 14J. Halpern, Science 1985, 227, 869–875.
- 15
- 15aA. Debuigne, J. R. Caille, R. Jérôme, Angew. Chem. Int. Ed. 2005, 44, 1101–1104; Angew. Chem. 2005, 117, 1125–1128;
- 15bA. Debuigne, R. Poli, C. Jérôme, R. Jérôme, C. Detrembleur, Prog. Polym. Sci. 2009, 34, 211–239.
- 16Y. Piette, A. Debuigne, C. Jerome, V. Bodart, R. Poli, C. Detrembleur, Polym. Chem. 2012, 3, 2880–2891.
- 17
- 17aA. Debuigne, A. N. Morin, A. Kermagoret, Y. Piette, C. Detrembleur, C. Jérôme, R. Poli, Chem. Eur. J. 2012, 18, 12834–12844;
- 17bM. Hurtgen, J. Liu, A. Debuigne, C. Jerome, C. Detrembleur, J. Polym. Sci. Part A 2012, 50, 400–408.
- 18S. Banerjee, V. Ladmiral, A. Debuigne, C. Detrembleur, R. Poli, B. Améduri, Angew. Chem. Int. Ed. 2018, 57, 2934–2937; Angew. Chem. 2018, 130, 2984–2987.
- 19
- 19aC. S. Hsu, T. Y. Yang, C. H. Peng, Polym. Chem. 2014, 5, 3867–3875;
- 19bY. Zhao, M. Yu, S. Zhang, Z. Wu, Y. Liu, C. H. Peng, X. Fu, Chem. Sci. 2015, 6, 2979–2988;
- 19cC.-M. Liao, C. C. Hsu, F. S. Wang, B. B. Wayland, C. H. Peng, Polym. Chem. 2013, 4, 3098–3104.
- 20F. S. Wang, T. Y. Yang, C. C. Hsu, Y. J. Chen, M. H. Li, Y. J. Hsu, M. C. Chuang, C. H. Peng, Macromol. Chem. Phys. 2016, 217, 422–432.
- 21
- 21aY. Zhao, M. Yu, S. Zhang, Y. Liu, X. Fu, Macromolecules 2014, 47, 6238–6245;
- 21bY. Zhao, S. Zhang, Z. Wu, X. Liu, X. Zhao, C.-H. Peng, X. Fu, Macromolecules 2015, 48, 5132–5139.
- 22S. Li, B. de Bruin, C. H. Peng, M. Fryd, B. B. Wayland, J. Am. Chem. Soc. 2008, 130, 13373–13381.
- 23
- 23aY. Wang, D. J. Darensbourg, Coord. Chem. Rev. 2018, 372, 85–100;
- 23bY. Wang, Y. Qin, X. Wang, F. Wang, Catal. Sci. Technol. 2014, 4, 3964–3972.
- 24W. M. Ren, Y. M. Wang, R. Zhang, J. Y. Jiang, X. B. Lu, J. Org. Chem. 2013, 78, 4801–4810.
- 25
- 25aM. J. Kendrick, W. Al-Akhdar, Inorg. Chem. 1987, 26, 3971–3972;
- 25bW. Mikolaiski, G. Baum, W. Massa, R. W. Hoffmann, J. Org. Chem. 1989, 376, 397–405.
- 26
- 26aT. Szymanska-Buzar, J. Paál-Lukács, P. Sándor, I. P. Hajdu, D. Gál, J. Org. Chem. 1987, 321, 249–255;
- 26bA. R. Howell, G. Pattenden, J. Chem. Soc. Chem. Commun. 1990, 103–104.
- 27
- 27aG. Dutta, D. Mandal, B. D. Gupta, J. Organomet. Chem. 2012, 706, 30–36;
- 27bM. Bhuyan, M. Laskar, D. Mandal, B. D. Gupta, Organometallics 2007, 26, 3559–3567.
- 28
- 28aA. Nishinaga, H. Tomita, K. Nishizawa, T. Matsuura, S. Ooi, K. Hirotsu, J. Chem. Soc. Dalton Trans. 1981, 7, 1504–1514;
- 28bF. A. Chavez, C. V. Nguyen, M. M. Olmstead, P. K. Mascharak, Inorg. Chem. 1996, 35, 6282–6291;
- 28cF. A. Chavez, J. A. Briones, M. M. Olmstead, P. K. Mascharak, Inorg. Chem. 1999, 38, 1603–1608.
- 29
- 29aC. T. Cohen, C. M. Thomas, K. L. Peretti, E. B. Lobkovsky, G. W. Coates, Dalton Trans. 2006, 1, 237–249;
- 29bM. North, S. C. Z. Quek, N. E. Pridmore, A. C. Whitwood, X. Wu, ACS Catal. 2015, 5, 3398–3402.
- 30J. M. Ready, E. N. Jacobsen, J. Am. Chem. Soc. 1999, 121, 6086–6087.
- 31J. J. Chapman, C. S. Day, M. E. Welker, Organometallics 2000, 19, 1615–1618.
- 32X. Liu, L. Tian, Z. Wu, X. Zhao, Z. Wang, D. Yu, X. Fu, Polym. Chem. 2017, 8, 6033–6038.
- 33
- 33aA. Debuigne, Y. Champouret, R. Jérôme, R. Poli, C. Detrembleur, Chem. Eur. J. 2008, 14, 4046–4059;
- 33bA. N. Morin, C. Detrembleur, C. Jérôme, P. De Tullio, R. Poli, A. Debuigne, Macromolecules 2013, 46, 4303–4312.
- 34
- 34aY. Champouret, K. C. MacLeod, K. M. Smith, B. O. Patrick, R. Poli, Organometallics 2010, 29, 3125–3132;
- 34bR. Poli, M. P. Shaver, Inorg. Chem. 2014, 53, 7580–7590.
- 35F. A. Chavez, J. M. Rowland, M. M. Olmstead, P. K. Mascharak, J. Am. Chem. Soc. 1998, 120, 9015–9027.
- 36M. R. Kember, A. Buchard, C. K. Williams, Chem. Commun. 2011, 47, 141–163.
- 37
- 37aS. Honda, H. Sugimoto, Macromolecules 2016, 49, 6810–6816;
- 37bJ. Hilf, P. Schulze, H. Frey, Macromol. Chem. Phys. 2013, 214, 2848–2855.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.