Significant Difference in Semiconducting Properties of Isomeric All-Acceptor Polymers Synthesized via Direct Arylation Polycondensation
Corresponding Author
Dr. Yang Wang
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Current address: Emergent Molecular Function Research Team, Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Tsukasa Hasegawa
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Search for more papers by this authorProf. Hidetoshi Matsumoto
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Search for more papers by this authorCorresponding Author
Prof. Tsuyoshi Michinobu
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Search for more papers by this authorCorresponding Author
Dr. Yang Wang
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Current address: Emergent Molecular Function Research Team, Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Search for more papers by this authorDr. Tsukasa Hasegawa
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Search for more papers by this authorProf. Hidetoshi Matsumoto
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Search for more papers by this authorCorresponding Author
Prof. Tsuyoshi Michinobu
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Search for more papers by this authorAbstract
The direct arylation polycondensation (DArP) appeared as an efficient method for producing semiconducting polymers but often requires acceptor monomers with orienting or activating groups for the reactive carbon-hydrogen (C-H) bonds, which limits the choice of acceptor units. In this study, we describe a DArP for producing high-molecular-weight all-acceptor polymers composed of the acceptor monomers without any orienting or activating groups via a modified method using Pd/Cu co-catalysts. We thus obtained two isomeric all-acceptor polymers, P1 and P2, which have the same backbone and side-chains but different positions of the nitrogen atoms in the thiazole units. This subtle change significantly influences their optoelectronic, molecular packing, and charge-transport properties. P2 with a greater backbone torsion has favorable edge-on orientations and a high electron mobility μe of 2.55 cm2 V−1 s−1. Moreover, P2-based transistors show an excellent shelf-storage stability in air even after the storage for 1 month.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201904966-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208–2267;
- 1bH. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, Y. Liu, Adv. Mater. 2012, 24, 4618–4622;
- 1cY. Wang, Y. Liu, S. Chen, R. Peng, Z. Ge, Chem. Mater. 2013, 25, 3196–3204;
- 1dY. Kim, A. Chortos, W. Xu, Y. Liu, J. Y. Oh, D. Son, J. Kang, A. M. Foudeh, C. Zhu, Y. Lee, S. Niu, J. Liu, R. Pfattner, Z. Bao, T.-W. Lee, Science 2018, 360, 998–1003.
- 2
- 2aY. Guo, Y. Li, O. Awartani, J. Zhao, H. Han, H. Ade, D. Zhao, H. Yan, Adv. Mater. 2016, 28, 8483–8489;
- 2bR. A. Schlitz, F. G. Brunetti, A. M. Glaudell, P. L. Miller, M. A. Brady, C. J. Takacs, C. J. Hawker, M. L. Chabinyc, Adv. Mater. 2014, 26, 2825–2830;
- 2cA. A. Said, J. Xie, Y. Wang, Z. Wang, Y. Zhou, K. Zhao, W. Gao, T. Michinobu, Q. Zhang, Small 2019, 15, 1803339.
- 3J. Yang, Z. Zhao, S. Wang, Y. Guo, Y. Liu, Chem 2018, 4, 2748–2785.
- 4Z. Yuan, B. Fu, S. Thomas, S. Zhang, G. DeLuca, R. Chang, L. Lopez, C. Fares, G. Zhang, J.-L. Bredas, E. Reichmanis, Chem. Mater. 2016, 28, 6045–6049.
- 5
- 5aT. Kanbara, T. Yamamoto, Chem. Lett. 1993, 22, 419–422;
- 5bJ.-K. Lee, M. C. Gwinner, R. Berger, C. Newby, R. Zentel, R. H. Friend, H. Sirringhaus, C. K. Ober, J. Am. Chem. Soc. 2011, 133, 9949–9951;
- 5cG. Kim, A. Han, H. R. Lee, J. Lee, J. H. Oh, C. Yang, Chem. Commun. 2014, 50, 2180–2183;
- 5dM. Nakano, I. Osaka, K. Takimiya, Macromolecules 2015, 48, 576–584;
- 5eY. Wang, M. Nakano, T. Michinobu, Y. Kiyota, T. Mori, K. Takimiya, Macromolecules 2017, 50, 857–864;
- 5fY. Shi, H. Guo, M. Qin, J. Zhao, Y. Wang, H. Wang, Y. Wang, A. Facchetti, X. Lu, X. Guo, Adv. Mater. 2018, 30, 1705745;
- 5gY. Shi, H. Guo, M. Qin, Y. Wang, J. Zhao, H. Sun, H. Wang, Y. Wang, X. Zhou, A. Facchetti, X. Lu, M. Zhou, X. Guo, Chem. Mater. 2018, 30, 7988–8001;
- 5hY. Wang, H. Guo, A. Harbuzaru, M. A. Uddin, I. A. Marcos, S. Ling, J. Yu, Y. Tang, H. Sun, J. T. L. Navarrete, R. P. Ortiz, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 2018, 140, 6095–6108.
- 6
- 6aS. Kowalski, S. Allard, U. Scherf, ACS Macro Lett. 2012, 1, 465–468;
- 6bA. Facchetti, L. Vaccaro, A. Marrocchi, Angew. Chem. Int. Ed. 2012, 51, 3520–3523; Angew. Chem. 2012, 124, 3578–3581;
- 6cL. G. Mercier, M. Leclerc, Acc. Chem. Res. 2013, 46, 1597–1605;
- 6dS. Kowalski, S. Allard, K. Zilberberg, T. Riedl, U. Sherf, Prog. Polym. Sci. 2013, 38, 1805–1814;
- 6eK. Okamoto, J. Zhang, J. B. Housekeeper, S. R. Marder, C. K. Luscombe, Macromolecules 2013, 46, 8059–8078;
- 6fA. E. Rudenko, B. C. Thompson, J. Polym. Sci. Part A 2015, 53, 135–147;
- 6gJ.-R. Pouliot, F. Grenier, J. T. Blaskovits, S. Beaupré, M. Leclerc, Chem. Rev. 2016, 116, 14225–14274;
- 6hT. Bura, J. T. Blaskovits, M. Leclerc, J. Am. Chem. Soc. 2016, 138, 10056–10071;
- 6iS.-L. Suraru, J. A. Lee, C. K. Luscombe, ACS Macro Lett. 2016, 5, 724–729;
- 6jH. Bohra, M. Wang, J. Mater. Chem. A 2017, 5, 11550–11571;
- 6kS. Yu, F. Liu, J. Yu, S. Zhang, C. Cabanetos, Y. Gao, W. Huang, J. Mater. Chem. C 2017, 5, 29–40;
- 6lJ. T. Blaskovits, M. Leclerc, Macromol. Rapid Commun. 2019, 40, 1800512;
- 6mJ. Kuwabara, T. Kanbara, Bull. Chem. Soc. Jpn. 2019, 92, 152–161.
- 7
- 7aQ. Wang, R. Takita, Y. Kikuzaki, F. Ozawa, J. Am. Chem. Soc. 2010, 132, 11420–11421;
- 7bW. Lu, J. Kuwabara, T. Kanbara, Macromolecules 2011, 44, 1252–1255;
- 7cP. Berrouard, A. Najari, A. Pron, D. Gendron, P. Morin, J. Pouliot, J. Veilleux, M. Leclerc, Angew. Chem. Int. Ed. 2012, 51, 2068–2071; Angew. Chem. 2012, 124, 2110–2113.
- 8F. Grenier, P. Berrouard, J. Pouliot, H. Tseng, A. J. Heeger, M. Leclerc, Polym. Chem. 2013, 4, 1836–1841.
- 9
- 9aS. J. Choi, J. Kuwabara, T. Kanbara, ACS Sustainable Chem. Eng. 2013, 1, 878–882;
- 9bW. Lu, J. Kuwabara, T. Kanbara, Macromol. Rapid Commun. 2013, 34, 1151–1156;
- 9cM. Wakioka, Y. Kitano, F. Ozawa, Macromolecules 2013, 46, 370–374;
- 9dF. Grenier, B. R. Aïch, Y.-Y. Lai, M. Guérette, A. B. Holmes, Y. Tao, W. W. H. Wong, M. Leclerc, Chem. Mater. 2015, 27, 2137–2143;
- 9eH. Xin, C. Ge, X. Jiao, X. Yang, K. Rundel, C. R. McNeill, X. Gao, Angew. Chem. Int. Ed. 2018, 57, 1322–1326; Angew. Chem. 2018, 130, 1336–1340;
- 9fK. Guo, J. H. Bai, Y. Jiang, Z. L. Wang, Y. Sui, Y. F. Deng, Y. Han, H. K. Tian, Y. H. Geng, Adv. Funct. Mater. 2018, 28, 1801097.
- 10
- 10aW. Li, W. S. C. Roelofs, M. Turbiez, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2014, 26, 3304–3309;
- 10bH. Usta, W. C. Sheets, M. Denti, G. Generali, R. Capelli, S. Lu, X. Yu, M. Muccini, A. Facchetti, Chem. Mater. 2014, 26, 6542–6556.
- 11
- 11aX. Guo, R. P. Ortiz, Y. Zheng, M.-G. Kim, S. Zhang, Y. Hu, G. Lu, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2011, 133, 13685–13697;
- 11bY. Wang, T. Hasegawa, H. Matsumoto, T. Mori, T. Michinobu, Adv. Mater. 2018, 30, 1707164;
- 11cY. Wang, T. Hasegawa, H. Matsumoto, T. Michinobu, J. Am. Chem. Soc. 2019, 141, 3566–3575.
- 12M. Kuramochi, J. Kuwabara, W. Lu, T. Kanbara, Macromolecules 2014, 47, 7378–7385.
- 13
- 13aR. Matsidik, H. Komber, A. Luzio, M. Caironi, M. Sommer, J. Am. Chem. Soc. 2015, 137, 6705–6711;
- 13bT. J. Aldrich, A. S. Dudnik, N. D. Eastham, E. F. Manley, L. X. Chen, R. P. H. Chang, F. S. Melkonyan, A. Facchetti, T. J. Marks, Macromolecules 2018, 51, 9140–9155.
- 14W. A. Herrmann, C. Brossmer, K. Öfele, C.-P. Reisinger, T. Priermeier, M. Beller, H. Fischer, Angew. Chem. Int. Ed. Engl. 1995, 34, 1844–1848; Angew. Chem. 1995, 107, 1989–1992.
- 15
- 15aS. Sharma, R. Soni, S. Kurungot, S. K. Asha, Macromolecules 2018, 51, 954–965;
- 15bR. Matsidik, M. Giorgio, A. Luzio, M. Caironi, H. Komber, M. Sommer, Eur. J. Org. Chem. 2018, 6121–6126.
- 16
- 16aD. Zhao, W. Wang, F. Yang, J. Lan, L. Yang, G. Gao, J. You, Angew. Chem. Int. Ed. 2009, 48, 3296–3300; Angew. Chem. 2009, 121, 3346–3350;
- 16bH.-Q. Do, R. M. K. Khan, O. Daugulis, J. Am. Chem. Soc. 2008, 130, 15185–15192;
- 16cQ. Guo, R. Jiang, D. Wu, J. You, Macromol. Rapid Commun. 2016, 37, 794–798;
- 16dD. P. Khambhati, K. A. N. Sachinthani, A. L. Rheingold, T. L. Nelson, Chem. Commun. 2017, 53, 5107–5109;
- 16eS. Pivsa-Art, T. Satoh, Y. Kawamura, M. Miura, M. Nomura, Bull. Chem. Soc. Jpn. 1998, 71, 467–473;
- 16fR. M. Pankow, L. Ye, B. C. Thompson, Polym. Chem. 2018, 9, 4120–4124;
- 16gZ.-L. Wang, L. Zhao, M.-X. Wang, Org. Lett. 2011, 13, 6560–6563;
- 16hL. M. Huffman, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 9196–9197;
- 16iF. Wang, L. Zhao, J. You, M.-X. Wang, Org. Chem. Front. 2016, 3, 880–886;
- 16jK. Hirano, M. Miura, Chem. Lett. 2015, 44, 868–873;
- 16kO. Daugulis, Top. Curr. Chem. 2009, 292, 57–84;
- 16lH.-Q. Do, O. Daugulis, J. Am. Chem. Soc. 2008, 130, 1128–1129.
- 17
- 17aM. S. Chen, O. P. Lee, J. R. Niskala, A. T. Yiu, C. J. Tassone, K. Schmidt, P. M. Beaujuge, S. S. Onishi, M. F. Toney, A. Zettl, J. M. J. Fréchet, J. Am. Chem. Soc. 2013, 135, 19229–19236;
- 17bY. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat. Commun. 2014, 5, 5293;
- 17cB. Nketia-Yawson, H.-S. Lee, D. Seo, Y. Yoon, W.-T. Park, K. Kwak, H. J. Son, B. Kim, Y.-Y. Noh, Adv. Mater. 2015, 27, 3045–3052;
- 17dY. Wang, T. Hasegawa, H. Matsumoto, T. Mori, T. Michinobu, Adv. Funct. Mater. 2017, 27, 1604608.
- 18
- 18aM. Wang, H. Wang, T. Yokoyama, X. Liu, Y. Huang, Y. Zhang, T.-Q. Nguyen, S. Aramaki, G. C. Bazan, J. Am. Chem. Soc. 2014, 136, 12576–12579;
- 18bG. C. Welch, R. C. Bakus II, S. J. Teat, G. C. Bazan, J. Am. Chem. Soc. 2013, 135, 2298–2305;
- 18cC. J. Takacs, Y. Sun, G. C. Welch, L. A. Perez, X. Liu, W. Wen, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2012, 134, 16597–16606;
- 18dL. Ying, B. B. Y. Hsu, H. Zhan, G. C. Welch, P. Zalar, L. A. Perez, E. J. Kramer, T.-Q. Nguyen, A. J. Heeger, W.-Y. Wong, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 18538–18541.
- 19
- 19aJ. Liu, G. Ye, B. van der Zee, J. Dong, X. Qiu, Y. Liu, G. Portale, R. C. Chiechi, L. J. A. Koster, Adv. Mater. 2018, 30, 1804290;
- 19bS. Wang, H. Sun, T. Erdmann, G. Wang, D. Fazzi, U. Lappan, Y. Puttisong, Z. Chen, M. Berggren, X. Crispin, A. Kiriy, B. Voit, T. J. Marks, S. Fabiano, A. Facchetti, Adv. Mater. 2018, 30, 1801898.
- 20
- 20aK. Takimiya, I. Osaka, M. Nakano, Chem. Mater. 2014, 26, 587–593;
- 20bK. Zhou, H. Dong, H.-I. Zhang, W. Hu, Phys. Chem. Chem. Phys. 2014, 16, 22448–22457.
- 21F. Chen, Y. Jiang, Y. Sui, J. Zhang, H. Tian, Y. Han, Y. Deng, W. Hu, Y. Geng, Macromolecules 2018, 51, 8652–8661.
- 22F. Wang, Y. Dai, W. Wang, H. Lu, L. Qiu, Y. Ding, G. Zhang, Chem. Mater. 2018, 30, 5451–5459.
- 23H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, V. Podzorov, Nat. Mater. 2018, 17, 2–7.
- 24R. Di Pietro, D. Fazzi, T. B. Kehoe, H. Sirringhaus, J. Am. Chem. Soc. 2012, 134, 14877–14889.
- 25H. Yan, Z. Chen, Y. Zheng, C. Nweman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature 2009, 457, 679–686.
- 26Z. Chen, Y. Zheng, H. Yan, A. Facchetti, J. Am. Chem. Soc. 2009, 131, 8–9.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.