Anisotropic Conductivity at the Single-Molecule Scale
Dr. Sepideh Afsari
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorParisa Yasini
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorDr. Haowei Peng
Department of Physics, Temple University, 1925 N 12th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorDr. John P. Perdew
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122 USA
Department of Physics, Temple University, 1925 N 12th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorCorresponding Author
Dr. Eric Borguet
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorDr. Sepideh Afsari
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorParisa Yasini
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorDr. Haowei Peng
Department of Physics, Temple University, 1925 N 12th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorDr. John P. Perdew
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122 USA
Department of Physics, Temple University, 1925 N 12th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorCorresponding Author
Dr. Eric Borguet
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122 USA
Search for more papers by this authorAbstract
In most junctions built by wiring a single molecule between two electrodes, the electrons flow along only one axis: between the two anchoring groups. However, molecules can be anisotropic, and an orientation-dependent conductance is expected. Here, we fabricated single-molecule junctions by using the electrode potential to control the molecular orientation and access individual elements of the conductivity tensor. We measured the conductance in two directions, along the molecular plane as the benzene ring bridges two electrodes using anchoring groups (upright) and orthogonal to the molecular plane with the molecule lying flat on the substrate (planar). The perpendicular (planar) conductance is about 400 times higher than that along the molecular plane (upright). This offers a new method for designing a reversible room-temperature single-molecule electromechanical switch that controllably employs the electrode potential to orient the molecule in the junction in either “ON” or “OFF” conductance states.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201903898-sup-0001-misc_information.pdf852.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. H. Flood, J. F. Stoddart, D. W. Steuerman, J. R. Health, Science 2004, 306, 2055–2056.
- 2A. Aviram, M. A. Ratner, Chem. Phys. Lett. 1974, 29, 277–283.
- 3M. del Valle, R. Gutierrez, C. Tejedor, G. Cuniberti, Nat. Nanotechnol. 2007, 2, 176–179.
- 4B. Xu, N. J. Tao, Science 2003, 301, 1221–1223.
- 5Z. Li, M. Smeu, M. A. Ratner, E. Borguet, J. Phys. Chem. C 2013, 117, 14890–14898.
- 6X. Li, J. He, J. Hihath, B. Xu, S. M. Lindsay, N. Tao, J. Am. Chem. Soc. 2006, 128, 2135–2141.
- 7F. Chen, X. Li, J. Hihath, Z. Huang, N. Tao, J. Am. Chem. Soc. 2006, 128, 15874–15881.
- 8N. J. Tao, Nat. Nanotechnol. 2006, 1, 173–181.
- 9A. Nitzan, M. A. Ratner, Science 2003, 300, 1384–1390.
- 10S. Afsari, Z. Li, E. Borguet, Angew. Chem. Int. Ed. 2014, 53, 9771–9774; Angew. Chem. 2014, 126, 9929–9932.
- 11Z. Li, H. Li, S. Chen, T. Froehlich, C. Yi, C. Schönenberger, M. Calame, S. Decurtins, S. X. Liu, E. Borguet, J. Am. Chem. Soc. 2014, 136, 8867–8870.
- 12M. Mine, T. Tsutsui, E. Miyoshi, Jpn. J. Appl. Phys. 2008, 47, 8033–8038.
- 13H. Wang, Z. Jiang, Y. Wang, S. Sanvito, S. Hou, ChemPhysChem 2016, 17, 2272–2277.
- 14Y. Komoto, S. Fujii, T. Nishino, M. Kiguchi, Beilstein J. Nanotechnol. 2015, 6, 2431–2437.
- 15M. Kiguchi, H. Nakamura, Y. Takahashi, T. Takahashi, T. Ohto, J. Phys. Chem. C 2010, 114, 22254–22261.
- 16J. N. Ladenthin, T. Frederiksen, M. Persson, J. C. Sharp, S. Gawinkowski, J. Waluk, T. Kumagai, Nat. Chem. 2016, 8, 935–940.
- 17C. Jia et al., Science 2016, 352, 1443–1446.
- 18B. E. Tebikachew, H. B. Li, A. Pirrotta, K. Börjesson, G. C. Solomon, J. Hihath, K. Moth-Poulsen, J. Phys. Chem. C 2017, 121, 7094–7100.
- 19L. J. O'Driscoll, J. M. Hamill, I. Grace, B. W. Nielsen, E. Almutib, Y. Fu, W. Hong, C. J. Lambert, J. O. Jeppesen, Chem. Sci. 2017, 8, 6123–6130.
- 20Z. Li, M. Smeu, S. Afsari, Y. Xing, M. A. Ratner, E. Borguet, Angew. Chem. Int. Ed. 2014, 53, 1098–1102; Angew. Chem. 2014, 126, 1116–1120.
- 21C. D. Frisbie, Science 2016, 352, 1394–1395.
- 22Z. Li, B. Han, L. J. Wan, T. Wandlowski, Langmuir 2005, 21, 6915–6928.
- 23S. Wu, J. Lipkowski, O. M. Magnussen, B. M. Ocko, T. Wandlowski, J. Electroanal. Chem. 1998, 446, 67–77.
- 24B. Han, Z. Li, S. Pronkin, T. Wandlowski, Can. J. Chem. 2004, 82, 1481–1494.
- 25B. Han, Z. Li, T. Wandlowski, Anal. Bioanal. Chem. 2007, 388, 121–129.
- 26X. Xiao, B. Xu, N. Tao, J. Am. Chem. Soc. 2004, 126, 5370–5371.
- 27M. A. Reed, Science 1997, 278, 252–254.
- 28J. Ulrich, D. Esrail, W. Pontius, L. Venkataraman, D. Millar, L. H. Doerrer, J. Phys. Chem. B 2006, 110, 2462–2466.
- 29M. Lackinger, S. Griessl, T. Markert, F. Jamitzky, W. M. Heckl, J. Phys. Chem. B 2004, 108, 13652–13655.
- 30M. Soler, E. Artacho, J. D. Gale, A. Garc, J. Junquera, P. Ordej, S. Daniel, J. Phys. Condens. Matter 2002, 11, 2745.
- 31N. Papior, N. Lorente, T. Frederiksen, A. García, Comput. Phys. Commun. 2017, 212, 8–24.
- 32N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 8861–8869.
- 33K. Berland, P. Hyldgaard, Phys. Rev. B 2014, 89, 035412.
- 34H. Peng, Z. Yang, J. P. Perdew, J. Sun, Phys. Rev. X 2016, 6, 041005.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.