Spectroscopic Evidence for Aminomethylene (H−C̈−NH2)—The Simplest Amino Carbene
M. Sc. André K. Eckhardt
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Peter R. Schreiner
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
Search for more papers by this authorM. Sc. André K. Eckhardt
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Peter R. Schreiner
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
Search for more papers by this authorDedicated to Professor A. J. Arduengo III
Abstract
Although N-heterocyclic carbenes have been well-studied, the simplest aminocarbene, aminomethylene H−C̈−NH2, has not been spectroscopically identified to date. Herein we report the gas-phase preparation of aminomethylene by high-vacuum flash pyrolysis of cyclopropylamine and subsequent trapping of the pyrolysate in an inert argon matrix at 12 K. Aminomethylene was characterized by matching matrix IR and UV/Vis spectroscopic data with ab initio coupled cluster computations. After UV irradiation of the matrix aminomethylene rearranges to its isomer methanimine (formaldimine) H2C=NH. Based on our experimental results and computations aminomethylene has a singlet ground state with a reaction barrier of almost 46 kcal mol−1 to methanimine so that H-tunneling is excluded.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201800679-sup-0001-misc_information.pdf1,015.6 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Igau, H. Grützmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 1988, 110, 6463–6466;
- 1bA. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361–363;
- 1cD. Enders, K. Breuer, G. Raabe, J. Runsink, J. H. Teles, J. P. Melder, K. Ebel, S. Brode, Angew. Chem. Int. Ed. Engl. 1995, 34, 1021–1023; Angew. Chem. 1995, 107, 1119–1122;
- 1dJ. H. Teles, J. P. Melder, K. Ebel, R. Schneider, E. Gehrer, W. Harder, S. Brode, D. Enders, K. Breuer, G. Raabe, Helv Chim Acta 1996, 79, 61–83;
- 1eW. A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. Engl. 1997, 36, 2162–2187; Angew. Chem. 1997, 109, 2256–2282;
- 1fA. J. Arduengo, Acc. Chem. Res. 1999, 32, 913–921;
- 1gD. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39–92;
- 1hD. Enders, T. Balensiefer, Acc. Chem. Res. 2004, 37, 534–541;
- 1iD. Enders, O. Niemeier, A. Henseler, Chem. Phys. Lett. 2007, 107, 5606–5655.
- 2For selected Reviews, see:
- 2aE. Peris, Chem. Rev. 2017, https://doi.org/10.1021/acs.chemrev.6b00695;
- 2bD. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307–9387;
- 2cM. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496;
- 2dL. M. Slaughter, ACS Catal. 2012, 2, 1802–1816;
- 2eV. P. Boyarskiy, K. V. Luzyanin, V. Y. Kukushkin, Coord. Chem. Rev. 2012, 256, 2029–2056;
- 2fJ. Vignolle, X. Cattoën, D. Bourissou, Chem. Rev. 2009, 109, 3333–3384.
- 3M. J. Polce, Y. Kim, C. Wesdemiotis, Int. J. Mass Spectrom. Ion Process. 1997, 167–168, 309–315.
- 4
- 4aP. B. Shevlin, D. W. McPherson, P. Melius, J. Am. Chem. Soc. 1981, 103, 7006–7007;
- 4bP. B. Shevlin, D. W. McPherson, P. Melius, J. Am. Chem. Soc. 1983, 105, 488–491;
- 4cD. W. Mcpherson, M. L. Mckee, P. B. Shevlin, J. Am. Chem. Soc. 1983, 105, 6493–6495;
- 4dD. W. McPherson, K. Rahman, I. Martinez, P. B. Shevlin, Origins Life Evol. Biospheres 1987, 17, 275–282;
- 4eP. R. Schreiner, H. P. Reisenauer, ChemPhysChem 2006, 7, 880–885.
- 5R. Pearson, F. J. Lovas, J. Chem. Phys. 1977, 66, 4149–4156.
- 6
- 6aM. E. Jacox, D. E. Milligan, J. Mol. Spectrosc. 1975, 56, 333–356;
- 6bY. Hamada, K. Hashiguchi, M. Tsuboi, Y. Koga, S. Kondo, J. Mol. Spectrosc. 1984, 105, 70–80.
- 7A. Teslja, B. Nizamov, P. J. Dagdigian, J. Phys. Chem. A 2004, 108, 4433–4439.
- 8
- 8aG. Duxbury, H. Kato, M. L. Le Lerre, Faraday Discuss. 1981, 71, 97–110;
- 8bL. Halonen, G. Duxbury, Chem. Phys. Lett. 1985, 118, 246–251;
- 8cL. Halonen, G. Duxbury, J. Chem. Phys. 1985, 83, 2078–2090;
- 8dL. Halonen, G. Duxbury, J. Chem. Phys. 1985, 83, 2091–2096.
- 9P. D. Godfrey, R. D. Brown, B. J. Robinson, M. W. Sinclair, Astrophys. Lett. 1973, 13, 119–121.
- 10A. Strecker, Justus Liebigs Ann. Chem. 1854, 91, 349–351.
10.1002/jlac.18540910309 Google Scholar
- 11T. Suzuki, M. Ohishi, T. Hirota, M. Saito, L. Majumdar, V. Wakelam, Astrophys. J. 2016, 825, 79–93.
- 12
- 12aD. Ritson, J. D. Sutherland, Nat. Chem. 2012, 4, 895–899;
- 12bJ. D. Sutherland, Angew. Chem. Int. Ed. 2016, 55, 104–121; Angew. Chem. 2016, 128, 108–126.
- 13
- 13aP. R. Schreiner, H. P. Reisenauer, F. C. Pickard IV, A. C. Simmonett, W. D. Allen, E. Matyus, A. G. Csaszar, Nature 2008, 453, 906–909;
- 13bP. R. Schreiner, J. Am. Chem. Soc. 2017, 139, 15276–15283.
- 14D. J. Ritson, J. D. Sutherland, Angew. Chem. Int. Ed. 2013, 52, 5845–5847; Angew. Chem. 2013, 125, 5957–5959.
- 15P. R. Schreiner, H. P. Reisenauer, D. Ley, D. Gerbig, C. H. Wu, W. D. Allen, Science 2011, 332, 1300–1303.
- 16A. K. Eckhardt, M. M. Linden, R. C. Wende, B. Bernhardt, P. R. Schreiner unpblished results.
- 17P. Theule, F. Borget, F. Mispelaer, G. Danger, F. Duvernay, J. C. Guillemin, T. Chiavassa, Astron. Astrophys. 2011, 534, A 64.
- 18N. Kaifu, M. Morimoto, K. Nagane, K. Akabane, T. Iguchi, K. Takagi, Astrophys. J. 1974, 191, L135–L137.
- 19P. D. Holtom, C. J. Bennett, Y. Osamura, N. J. Mason, R. I. Kaiser, Astrophys. J. 2005, 626, 940–952.
- 20Y. Hamada, Y. Amatatsu, M. Tsuboi, J. Mol. Spectrosc. 1985, 110, 369–378.
- 21D. E. Milligan, J. Chem. Phys. 1961, 35, 1491–1497.
- 22F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2 1987, 1–19.
- 23C. J. Purnell, A. J. Barnes, S. Suzuki, D. F. Ball, W. J. Orville-Thomas, Chem. Phys. 1976, 12, 77–87.
- 24
- 24aG. Wentzel, Z. Phys. 1926, 38, 518–529;
- 24bH. A. Kramers, Z. Phys. 1926, 39, 828–840;
- 24cL. Brillouin, C. R. Hebd. Seances Acad. Sci. 1926, 183, 24–26.
- 25P. v. R. Schleyer, Pure Appl. Chem. 1987, 59, 1647–1660.
- 26P. R. Schreiner, H. P. Reisenauer, Angew. Chem. Int. Ed. 2008, 47, 7071–7074; Angew. Chem. 2008, 120, 7179–7182.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.