Vesicle Tubulation with Self-Assembling DNA Nanosprings
Michael W. Grome
Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516 USA
Search for more papers by this authorDr. Zhao Zhang
Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516 USA
Search for more papers by this authorDr. Frédéric Pincet
Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516 USA
Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
Search for more papers by this authorCorresponding Author
Prof. Chenxiang Lin
Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516 USA
Search for more papers by this authorMichael W. Grome
Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516 USA
Search for more papers by this authorDr. Zhao Zhang
Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516 USA
Search for more papers by this authorDr. Frédéric Pincet
Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516 USA
Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
Search for more papers by this authorCorresponding Author
Prof. Chenxiang Lin
Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516 USA
Search for more papers by this authorAbstract
A major goal of nanotechnology and bioengineering is to build artificial nanomachines capable of generating specific membrane curvatures on demand. Inspired by natural membrane-deforming proteins, we designed DNA-origami curls that polymerize into nanosprings and show their efficacy in vesicle deformation. DNA-coated membrane tubules emerge from spherical vesicles when DNA-origami polymerization or high membrane-surface coverage occurs. Unlike many previous methods, the DNA self-assembly-mediated membrane tubulation eliminates the need for detergents or top-down manipulation. The DNA-origami design and deformation conditions have substantial influence on the tubulation efficiency and tube morphology, underscoring the intricate interplay between lipid bilayers and vesicle-deforming DNA structures.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201800141-sup-0001-misc_information.pdf13.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. T. McMahon, J. L. Gallop, Nature 2005, 438, 590–596.
- 2
- 2aS. M. Ferguson, P. De Camilli, Nat. Rev. Mol. Cell Biol. 2012, 13, 75–88;
- 2bA. Frost, V. M. Unger, P. De Camilli, Cell 2009, 137, 191–196;
- 2cJ. H. Hurley, P. I. Hanson, Nat. Rev. Mol. Cell Biol. 2010, 11, 556–566.
- 3
- 3aP. Xu, G. Tan, J. Zhou, J. He, L. B. Lawson, G. L. McPherson, V. T. John, Langmuir 2009, 25, 10422–10425;
- 3bA. Zidovska, K. K. Ewert, J. Quispe, B. Carragher, C. S. Potter, C. R. Safinya, Methods Enzymol. 2009, 465, 111–128;
- 3cA. Roux, G. Cappello, J. Cartaud, J. Prost, B. Goud, P. Bassereau, Proc. Natl. Acad. Sci. USA 2002, 99, 5394–5399;
- 3dA. Diz-Muñoz, D. A. Fletcher, O. D. Weiner, Trends Cell Biol. 2013, 23, 47–53;
- 3eZ. Zhang, Y. Yang, F. Pincet, M. C. Llaguno, C. Lin, Nat. Chem. 2017, 9, 653–659.
- 4N. C. Seeman, J. Theor. Biol. 1982, 99, 237–247.
- 5
- 5aF. Hong, F. Zhang, Y. Liu, H. Yan, Chem. Rev. 2017, 117, 12584–12640;
- 5bN. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3, 17068.
- 6
- 6aS. Howorka, Nat. Nanotechnol. 2017, 12, 619–630;
- 6bM. Langecker, V. Arnaut, J. List, F. C. Simmel, Acc. Chem. Res. 2014, 47, 1807–1815.
- 7
- 7aN. Avakyan, J. W. Conway, H. F. Sleiman, J. Am. Chem. Soc. 2017, 139, 12027–12034;
- 7bA. Johnson-Buck, S. Jiang, H. Yan, N. G. Walter, ACS Nano 2014, 8, 5641–5649;
- 7cY. Suzuki, M. Endo, H. Sugiyama, Nat. Commun. 2015, 6, 8052.
- 8
- 8aJ. R. Burns, A. Seifert, N. Fertig, S. Howorka, Nat. Nanotechnol. 2016, 11, 152–156;
- 8bK. Göpfrich, T. Zettl, A. E. Meijering, S. Hernandez-Ainsa, S. Kocabey, T. Liedl, U. F. Keyser, Nano Lett. 2015, 15, 3134–3138;
- 8cM. Langecker, V. Arnaut, T. G. Martin, J. List, S. Renner, M. Mayer, H. Dietz, F. C. Simmel, Science 2012, 338, 932–936.
- 9
- 9aS. D. Perrault, W. M. Shih, ACS Nano 2014, 8, 5132–5140;
- 9bY. Yang, J. Wang, H. Shigematsu, W. Xu, W. M. Shih, J. E. Rothman, C. Lin, Nat. Chem. 2016, 8, 476–483.
- 10
- 10aA. Czogalla, D. J. Kauert, H. G. Franquelim, V. Uzunova, Y. Zhang, R. Seidel, P. Schwille, Angew. Chem. Int. Ed. 2015, 54, 6501–6505; Angew. Chem. 2015, 127, 6601–6605;
- 10bS. Kocabey, S. Kempter, J. List, Y. Xing, W. Bae, D. Schiffels, W. M. Shih, F. C. Simmel, T. Liedl, ACS Nano 2015, 9, 3530–3539.
- 11
- 11aP. I. Hanson, R. Roth, Y. Lin, J. E. Heuser, J. Cell Biol. 2008, 180, 389–402;
- 11bW. M. Henne, N. J. Buchkovich, Y. Zhao, S. D. Emr, Cell 2012, 151, 356–371;
- 11cN. Chiaruttini, L. Redondo-Morata, A. Colom, F. Humbert, M. Lenz, S. Scheuring, A. Roux, Cell 2015, 163, 866–879.
- 12H. Dietz, S. M. Douglas, W. M. Shih, Science 2009, 325, 725–730.
- 13N. J. Buchkovich, W. M. Henne, S. Tang, S. D. Emr, Dev. Cell 2013, 27, 201–214.
- 14S. Tang, W. M. Henne, P. P. Borbat, N. J. Buchkovich, J. H. Freed, Y. Mao, J. C. Fromme, S. D. Emr, eLife 2015, 4, e 12548.
- 15A. M. Maier, W. Bae, D. Schiffels, J. F. Emmerig, M. Schiff, T. Liedl, ACS Nano 2017, 11, 1301–1306.
- 16D. N. Kim, F. Kilchherr, H. Dietz, M. Bathe, Nucleic Acids Res. 2012, 40, 2862–2868.
- 17
- 17aI. R. Cooke, M. Deserno, Biophys. J. 2006, 91, 487–495;
- 17bB. Sorre, A. Callan-Jones, J. Manzi, B. Goud, J. Prost, P. Bassereau, A. Roux, Proc. Natl. Acad. Sci. USA 2012, 109, 173–178.
- 18J. Mingorance, M. Tadros, M. Vicente, J. M. Gonzalez, G. Rivas, M. Velez, J. Biol. Chem. 2005, 280, 20909–20914.
- 19A. Czogalla, H. G. Franquelim, P. Schwille, Biophys. J. 2016, 110, 1698–1707.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.