Design, Synthesis, and Application of Chiral C2-Symmetric Spiroketal-Containing Ligands in Transition-Metal Catalysis
Alonso J. Argüelles
Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109 USA
Search for more papers by this authorSiyuan Sun
Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109 USA
Search for more papers by this authorBrenna G. Budaitis
Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Pavel Nagorny
Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109 USA
Search for more papers by this authorAlonso J. Argüelles
Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109 USA
Search for more papers by this authorSiyuan Sun
Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109 USA
Search for more papers by this authorBrenna G. Budaitis
Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Pavel Nagorny
Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109 USA
Search for more papers by this authorAbstract
We present an expedient and economical route to a new spiroketal-based C2-symmetric chiral scaffold, termed SPIROL. Based on this spirocyclic scaffold, several chiral ligands were generated. These ligands were successfully employed in an array of stereoselective transformations, including in iridium-catalyzed hydroarylations (up to 95 % ee), palladium-catalyzed allylic alkylations (up to 97 % ee), intermolecular palladium-catalyzed Heck couplings (up to 94 % ee), and rhodium-catalyzed dehydroalanine hydrogenation (up to 93 % ee).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201713304-sup-0001-misc_information.pdf18.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Akutagawa, Appl. Catal. A 1995, 128, 171;
- 1bR. Noyori, Angew. Chem. Int. Ed. 2002, 41, 2008;
10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 2108;
- 1cC. A. Busacca, D. R. Fanrick, J. J. Song, C. H. Senanayake, Adv. Synth. Catal. 2011, 353, 1825.
- 2L. A. Adrio, K. Kuok (Mimi) Hii in Organometallic Chemistry, Vol. 35 (Eds.: ), RSC Publishing, London, 2009, pp. 62–92.
- 3
- 3aT. T. L. Au-Yeung, S.-S. Chan, A. S. C. Chan, Adv. Synth. Catal. 2003, 345, 537;
- 3bM. Berthod, G. Mignani, D. Woodward, M. Lemaire, Chem. Rev. 2005, 105, 1801;
- 3cQ.-L. Zhou in Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, 2011;
10.1002/9783527635207 Google Scholar
- 3dS. Lühr, J. Holz, A. Börner, ChemCatChem 2011, 3, 1708;
- 3eM. M. Pereira, M. J. F. Calvete, R. M. B. Carrilho, A. R. Abreu, Chem. Soc. Rev. 2013, 42, 6990.
- 4For examples of chiral-phosphine-based ligand design, see:
- 4aW. Tang, N. D. Patel, G. Xu, X. Xu, J. Savoie, S. Ma, M.-H. Hao, S. Keshipeddy, A. G. Capacci, X. Wei, Y. Zhang, J. J. Gao, W. Li, S. Rodriguez, B. Z. Lu, N. K. Yee, C. H. Senanayake, Org. Lett. 2012, 14, 2258;
- 4bF. Maurer, V. Huch, A. Ullrich, U. Kazmaier, J. Org. Chem. 2012, 77, 5139;
- 4cG. Liu, X. Liu, Z. Cai, G. Jiao, G. Xu, W. Tang, Angew. Chem. Int. Ed. 2013, 52, 4235; Angew. Chem. 2013, 125, 4329;
- 4dF. S. P. Cardoso, K. A. Abboud, A. Aponick, J. Am. Chem. Soc. 2013, 135, 14548;
- 4eJ. Graff, E. Lastawiecka, L. Guenee, F. Leroux, A. Alexakis, Adv. Synth. Catal. 2015, 357, 2833;
- 4fP. Ramírez-López, A. Ros, B. Estepa, R. Fernández, B. Fiser, E. Gómez-Bengoa, J. M. Lassaletta, ACS Catal. 2016, 6, 3955;
- 4gS. Mishra, A. Aponick, J. Am. Chem. Soc. 2017, 139, 3352;
- 4hP. H. S. Paioti, K. A. Abboud, A. Aponick, ACS Catal. 2017, 7, 2133;
- 4iF. Sartorius, M. Trebing, C. Brückner, R. Brückner, Chem. Eur. J. 2017, 23, 17463.
- 5
- 5aV. B. Birman, A. L. Rheingold, K.-C. Lam, Tetrahedron: Asymmetry 1999, 10, 125;
- 5bJ.-H. Zhang, J. Liao, X. Cui, K.-B. Yu, J.-G. Deng, S.-F. Zhu, L.-X. Wang, Q.-L. Zhou, L. W. Chung, T. Ye, Tetrahedron: Asymmetry 2002, 13, 1363;
- 5cJ. H. Xie, L. X. Wang, Y. Fu, S. F. Zhu, B. M. Fan, H. F. Duan, Q.-L. Zhou, J. Am. Chem. Soc. 2003, 125, 4404.
- 6For selected reviews, see:
- 6aJ. H. Xie, Q.-L. Zhou, Acc. Chem. Res. 2008, 41, 581;
- 6bK. Ding, Z. Han, Z. Wang, Chem. Asian J. 2009, 4, 32.
- 7S. Li, J.-W. Zhang, X.-L. Li, D.-J. Cheng, B. Tan, J. Am. Chem. Soc. 2016, 138, 16561.
- 8
- 8aZ. Sun, G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc. 2012, 134, 8074;
- 8bP. Nagorny, Z. Sun, G. A. Winschel, Synlett 2013, 661;
- 8cY. Y. Khomutnyk, A. J. Argüelles, G. A. Winschel, Z. Sun, P. M. Zimmerman, J. Am. Chem. Soc. 2016, 138, 444.
- 9
- 9aT. P. Dang, H. B. Kagan, J. Chem. Soc. 1971, 10, 481;
- 9bH. Shimizu, I. Nagasaki, K. Matsumura, N. Sayo, T. Saito, Acc. Chem. Res. 2007, 40, 1385;
- 9cC. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S. Sawatzky, A. Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, R. M. J. Ferguson, M. Stradiotto, Nat. Commun. 2016, 7, 11073.
- 10
- 10aX. Wang, Z. Han, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 2012, 51, 936; Angew. Chem. 2012, 124, 960;
- 10bZ.-Y. Cao, X. Wang, C. Tan, X.-L. Zhao, J. Zhou, K. Ding, J. Am. Chem. Soc. 2013, 135, 8197.
- 11K. Soai, S. Yokoyama, T. Hayasaka, J. Org. Chem. 1991, 56, 4264.
- 12M.-C. Wang, Y.-H. Wang, G.-W. Li, P.-P. Sun, J.-X. Tian, H.-J. Lu, Tetrahedron: Asymmetry 2011, 22, 761.
- 13Computations were carried out using the Q-Chem. quantum-chemical package at the ωB97x-D level of theory with a mixed basis set (6-31G** and lanl2dz). Natural bond orbital (NBO) analysis was carried out using NBO 5.0. Additional details and full citations are included in the Supporting Information.
- 14Y. Ebe, M. Onoda, T. Nishimura, H. Yorimitsu, Angew. Chem. Int. Ed. 2017, 56, 5607; Angew. Chem. 2017, 129, 5699.
- 15J. H. Xie, H. F. Duan, B. M. Fan, X. Cheng, L. X. Wang, Q.-L. Zhou, Adv. Synth. Catal. 2004, 346, 625.
- 16J. Hu, H. Hirao, Y. Li, J. S. Zhou, Angew. Chem. Int. Ed. 2013, 52, 8676; Angew. Chem. 2013, 125, 8838.
- 17R. Guo, T. T.-L. Au-Yeung, J. Wu, M. C. K. Choi, A. S. C. Chan, Tetrahedron: Asymmetry 2002, 13, 2519.
- 18S. Takizawa, K. Kiriyama, K. Ieki, H. Sasai, Chem. Commun. 2011, 47, 9227.
- 19P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793.
- 20L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955.
- 21A. Okuniewski, D. Rosiak, J. Chojnacki, B. Becker, Polyhedron 2015, 90, 47.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.