Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes
Chengcheng Li
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorDr. Tuo Wang
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorDr. Zhi-Jian Zhao
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorWeimin Yang
Department of Physics, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Jian-Feng Li
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorAng Li
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorProf. Zhilin Yang
Department of Physics, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Geoffrey A. Ozin
Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6 Canada
Search for more papers by this authorCorresponding Author
Prof. Jinlong Gong
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorChengcheng Li
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorDr. Tuo Wang
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorDr. Zhi-Jian Zhao
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorWeimin Yang
Department of Physics, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Jian-Feng Li
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorAng Li
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorProf. Zhilin Yang
Department of Physics, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Geoffrey A. Ozin
Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6 Canada
Search for more papers by this authorCorresponding Author
Prof. Jinlong Gong
School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorAbstract
A hundred years on, the energy-intensive Haber–Bosch process continues to turn the N2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N2 that is based on clean energy. Surface oxygen vacancies (surface Ovac) hold great potential for N2 adsorption and activation, but introducing Ovac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface Ovac by atomic layer deposition is described, forming a thin amorphous TiO2 layer on plasmon-enhanced rutile TiO2/Au nanorods. Surface Ovac in the outer amorphous TiO2 thin layer promote the adsorption and activation of N2, which facilitates N2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201713229-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. F. Service, Science 2014, 345, 610–610.
- 2S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu, Science 2014, 345, 637–640.
- 3
- 3aG. N. Schrauzer, T. D. Guth, J. Am. Chem. Soc. 1977, 99, 7189–7193;
- 3bJ. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang, G. C. Schatz, M. G. Kanatzidis, Proc. Natl. Acad. Sci. USA 2016, 113, 5530–5535.
- 4H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393–6399.
- 5G. Dong, W. Ho, C. Wang, J. Mater. Chem. A 2015, 3, 23435–23441.
- 6S. Hu, X. Chen, Q. Li, Y. Zhao, W. Mao, Catal. Sci. Technol. 2016, 6, 5884–5890.
- 7H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929–10936.
- 8M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, J. Am. Chem. Soc. 2011, 133, 16414–16417.
- 9
- 9aT. Oshikiri, K. Ueno, H. Misawa, Angew. Chem. Int. Ed. 2016, 55, 3942–3946; Angew. Chem. 2016, 128, 4010–4014;
- 9bT. Oshikiri, K. Ueno, H. Misawa, Angew. Chem. Int. Ed. 2014, 53, 9802–9805; Angew. Chem. 2014, 126, 9960–9963.
- 10M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang, D. R. MacFarlane, Nat. Commun. 2016, 7, 11335.
- 11P. Zhang, T. Wang, J. Gong, Adv. Mater. 2015, 27, 5328–5342.
- 12
- 12aH. H. Pham, L.-W. Wang, Phys. Chem. Chem. Phys. 2015, 17, 541–550;
- 12bH. F. Lu, F. Li, G. Liu, Z.-G. Chen, D.-W. Wang, H.-T. Fang, G. Q. Lu, Z. H. Jiang, H.-M. Cheng, Nanotechnology 2008, 19, 405504.
- 13
- 13aS. M. George, Chem. Rev. 2010, 110, 111–131;
- 13bT. Wang, Z. Luo, C. Li, J. Gong, Chem. Soc. Rev. 2014, 43, 7469–7484.
- 14
- 14aS. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005–1009;
- 14bM. R. Shaner, S. Hu, K. Sun, N. S. Lewis, Energy Environ. Sci. 2015, 8, 203–207.
- 15D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836–841.
- 16
- 16aF. Su, T. Wang, R. Lv, J. Zhang, P. Zhang, J. Lu, J. Gong, Nanoscale 2013, 5, 9001–9009;
- 16bB. Liu, E. S. Aydil, J. Am. Chem. Soc. 2009, 131, 3985–3990.
- 17S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, M. Moskovits, Nat. Nanotechnol. 2013, 8, 247–251.
- 18D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, A. A. Sokol, Nat. Mater. 2013, 12, 798–801.
- 19F. Bozso, G. Ertl, M. Weiss, J. Catal. 1977, 50, 519–529.
- 20
- 20aL. C. Seefeldt, B. M. Hoffman, D. R. Dean, Annu. Rev. Biochem. 2009, 78, 701–722;
- 20bC. J. M. van der Ham, M. T. M. Koper, D. G. H. Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183–5191.
- 21
- 21aD. D. Evanoff, G. Chumanov, ChemPhysChem 2005, 6, 1221–1231;
- 21bC. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025–1102.
- 22J. Lee, T. Javed, T. Skeini, A. O. Govorov, G. W. Bryant, N. A. Kotov, Angew. Chem. Int. Ed. 2006, 45, 4819–4823; Angew. Chem. 2006, 118, 4937–4941.
- 23X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Nanoscale 2013, 5, 3601–3614.
- 24L. Li, J. Yan, T. Wang, Z.-J. Zhao, J. Zhang, J. Gong, N. Guan, Nat. Commun. 2015, 6, 5881.
- 25P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, C. Li, ACS Appl. Mater. Interfaces 2015, 7, 3791–3796.
- 26T. K. Sham, M. S. Lazarus, Chem. Phys. Lett. 1979, 68, 426–432.
- 27G. Ketteler, S. Yamamoto, H. Bluhm, K. Andersson, D. E. Starr, D. F. Ogletree, H. Ogasawara, A. Nilsson, M. Salmeron, J. Phys. Chem. C 2007, 111, 8278–8282.
- 28Y. Wu, H. Liu, J. Zhang, F. Chen, J. Phys. Chem. C 2009, 113, 14689–14695.
- 29T. Wang, J. Wei, M. C. Downer, J. G. Ekerdt, Appl. Phys. Lett. 2011, 98, 122904.
- 30S. Hu, Y. Li, F. Li, Z. Fan, H. Ma, W. Li, X. Kang, ACS Sustainable Chem. Eng. 2016, 4, 2269–2278.
- 31W. Ma, Z. Lu, M. Zhang, Appl. Phys. A 1998, 66, 621–627.
- 32A. R. Singh, B. A. Rohr, J. A. Schwalbe, M. Cargnello, K. Chan, T. F. Jaramillo, I. Chorkendorff, J. K. Nørskov, ACS Catal. 2017, 7, 706–709.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.