A High-Voltage Molecular-Engineered Organic Sensitizer–Iron Redox Shuttle Pair: 1.4 V DSSC and 3.3 V SSM-DSSC Devices
Roberta R. Rodrigues
Department of Chemistry and Biochemistry, University of Mississippi, 481 Coulter Hall, University, MS, 38677 USA
Search for more papers by this authorDr. Hammad Cheema
Department of Chemistry and Biochemistry, University of Mississippi, 481 Coulter Hall, University, MS, 38677 USA
Search for more papers by this authorCorresponding Author
Prof. Jared H. Delcamp
Department of Chemistry and Biochemistry, University of Mississippi, 481 Coulter Hall, University, MS, 38677 USA
Search for more papers by this authorRoberta R. Rodrigues
Department of Chemistry and Biochemistry, University of Mississippi, 481 Coulter Hall, University, MS, 38677 USA
Search for more papers by this authorDr. Hammad Cheema
Department of Chemistry and Biochemistry, University of Mississippi, 481 Coulter Hall, University, MS, 38677 USA
Search for more papers by this authorCorresponding Author
Prof. Jared H. Delcamp
Department of Chemistry and Biochemistry, University of Mississippi, 481 Coulter Hall, University, MS, 38677 USA
Search for more papers by this authorAbstract
The development of high voltage solar cells is an attractive way to use sunlight for solar-to-fuel devices, multijunction solar-to-electric systems, and to power limited-area consumer electronics. By designing a low-oxidation-potential organic dye (RR9)/redox shuttle (Fe(bpy)33+/2+) pair for dye-sensitized solar-cell (DSSC) devices, the highest single device photovoltage (1.42 V) has been realized for a DSSC not relying on doped TiO2. Additionally, Fe(bpy)33+/2+ offers a robust, readily tunable ligand platform for redox potential tuning. RR9 can be regenerated with a low driving force (190 mV), and by utilizing the RR9/Fe(bpy)33+/2+ redox shuttle pair in a subcell for a sequential series multijunction (SSM)-DSSC system, one of the highest known three subcell photovoltage was attained for any solar-cell technology (3.34 V, >1.0 V per subcell).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201712894-sup-0001-misc_information.pdf3.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. I. Fujisawa, M. Hanaya, Chem. Commun. 2015, 51, 15894–15897;
- 1bS. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242–247;
- 1cM. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.-E. Moser, M. Grätzel, A. Hagfeldt, Nature Photon. 2017, 11, 372–378;
- 1dA. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352, aad 4424;
- 1eH. Cheema, R. R. Rodrigues, J. H. Delcamp, Energy Environ. Sci. 2017, 10, 1764–1769;
- 1fB. D. Sherman, M. V. Sheridan, K.-R. Wee, S. L. Marquard, D. Wang, L. Alibabaei, D. L. Ashford, T. J. Meyer, J. Am. Chem. Soc. 2016, 138, 16745–16753;
- 1gS. H. Kang, M. J. Jeong, Y. K. Eom, I. T. Choi, S. M. Kwon, Y. Yoo, J. Kim, J. Kwon, J. H. Park, H. K. Kim, Adv. Energy Mater. 2016, 7, 1602117;
- 1hA. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595–6663;
- 1iS. Zhang, X. Yang, Y. Numata, L. Han, Energy Environ. Sci. 2013, 6, 1443–1464.
- 2
- 2aK. Kakiage, H. Osada, Y. Aoyama, T. Yano, K. Oya, S. Iwamoto, J. I. Fujisawa, M. Hanaya, Sci. Rep. 2016, 6, 35888;
- 2bJ. H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J. E. Moser, C. Yi, M. K. Nazeeruddin, M. Grätzel, Nat. Commun. 2012, 3, 631;
- 2cC. Teng, X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt, L. Sun, Org. Lett. 2009, 11, 5542–5545.
- 3
- 3aK. Zhang, M. Ma, P. Li, D. H. Wang, J. H. Park, Adv. Energy Mater. 2016, 6, 1600602;
- 3bB. D. Sherman, J. J. Bergkamp, C. L. Brown, A. L. Moore, D. Gust, T. A. Moore, Energy Environ. Sci. 2016, 9, 1812–1817;
- 3cS. Y. Chae, S. J. Park, O. S. Joo, Y. Jun, B. K. Min, Y. J. Hwang, Sci. Rep. 2016, 6, 30868.
- 4K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, M. Hanaya, Chem. Commun. 2013, 49, 179–180.
- 5
- 5aD. P. Hagberg, X. Jiang, E. Gabrielsson, M. Linder, T. Marinado, T. Brinck, A. Hagfeldt, L. Sun, J. Mater. Chem. 2009, 19, 7232–7238;
- 5bS. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, J. Am. Chem. Soc. 2010, 132, 16714–16724.
- 6A. J. Huckaba, A. Yella, P. Brogdon, J. S. Murphy, M. K. Nazeeruddin, M. Grätzel, J. H. Delcamp, Chem. Commun. 2016, 52, 8424–8427.
- 7
- 7aY. Wu, W. H. Zhu, S. M. Zakeeruddin, M. Grätzel, ACS Appl. Mater. Interfaces 2015, 7, 9307–9318;
- 7bY. Saygili, M. Soderberg, N. Pellet, F. Giordano, Y. Cao, A. B. Munoz-Garcia, S. M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo, L. Kavan, J. E. Moser, M. Grätzel, A. Hagfeldt, M. Freitag, J. Am. Chem. Soc. 2016, 138, 15087–15096;
- 7cM. Zhang, Y. Wang, M. Xu, W. Ma, R. Li, P. Wang, Energy Environ. Sci. 2013, 6, 2944–2949;
- 7dZ. Yao, M. Zhang, R. Li, L. Yang, Y. Qiao, P. Wang, Angew. Chem. Int. Ed. 2015, 54, 5994–5998; Angew. Chem. 2015, 127, 6092–6096;
- 7eS. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J.-E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, P. Bäuerle, Adv. Funct. Mater. 2012, 22, 1291–1302.
- 8K. D. Seo, I. T. Choi, H. K. Kim, Chem. Eur. J. 2015, 21, 14804–14811.
- 9B. Pashaei, H. Shahroosvand, P. Abbasi, RSC Adv. 2015, 5, 94814–94848.
- 10S. A. Richert, P. K. S. Tsang, D. T. Sawyer, Inorg. Chem. 1989, 28, 2471–2475.
- 11
- 11aM. Zerara, A. Hauser, ChemPhysChem 2004, 5, 395–399;
- 11bG. W. Luther III, Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications, Wiley, Chichester, 2016;
10.1002/9781118851432 Google Scholar
- 11cN. Yaghoobi Nia, P. Farahani, H. Sabzyan, M. Zendehdel, M. Oftadeh, Phys. Chem. Chem. Phys. 2014, 16, 11481–11491.
- 12S. M. Feldt, P. W. Lohse, F. Kessler, M. K. Nazeeruddin, M. Grätzel, G. Boschloo, A. Hagfeldt, Phys. Chem. Chem. Phys. 2013, 15, 7087–7097.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.