Pancake Bond Orders of a Series of π-Stacked Triangulene Radicals
Zhongyu Mou
Chemistry Department, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057-1227 USA
Search for more papers by this authorCorresponding Author
Prof. Miklos Kertesz
Chemistry Department, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057-1227 USA
Search for more papers by this authorZhongyu Mou
Chemistry Department, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057-1227 USA
Search for more papers by this authorCorresponding Author
Prof. Miklos Kertesz
Chemistry Department, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057-1227 USA
Search for more papers by this authorAbstract
Conjugated radicals are capable of forming π-stacking “pancake-bonded” dimers. Members of the family of triangulene hydrocarbons, non-Kekulé neutral multiradicals, can utilize more than one singly occupied molecular orbital (SOMO) to form multiple pancake-bonded dimers with formal bond orders of up to five. The resulting dimer binding energies can be quite high and the intermolecular contacts rather small compared to the respective van der Waals values. The preferred configurations are driven by the large stabilization energy of overlapping SOMOs.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201704941-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. S. Mulliken, W. B. Person, Molecular Complexes, Wiley, New York, 1969, chap. 16;
- 1bK. Goto, T. Kubo, K. Yamamoto, K. Nakasuji, K. Sato, D. Shiomi, T. Takui, M. Kubota, T. Kobayashi, K. Yakushi, J. Ouyang, J. Am. Chem. Soc. 1999, 121, 1619–1620;
- 1cD. Small, V. Zaitsev, Y. Jung, S. V. Rosokha, M. Head-Gordon, J. K. Kochi, J. Am. Chem. Soc. 2004, 126, 13850–13858;
- 1dS. Suzuki, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, J. Am. Chem. Soc. 2006, 128, 2530–2531;
- 1eZ.-h. Cui, H. Lischka, H. Z. Beneberu, M. Kertesz, J. Am. Chem. Soc. 2014, 136, 5539–5542;
- 1fT. Devic, M. Yuan, J. Adams, D. C. Fredrickson, S. Lee, D. Venkataraman, J. Am. Chem. Soc. 2005, 127, 14616–14627.
- 2
- 2aM. E. Itkis, X. Chi, A. W. Cordes, R. C. Haddon, Science 2002, 296, 1443–1445;
- 2bY. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 2011, 3, 197–204;
- 2cS. K. Pal, M. E. Itkis, F. S. Tham, R. W. Reed, R. T. Oakley, R. C. Haddon, Science 2005, 309, 281–284;
- 2dK. V. Raman, A. M. Kamerbeek, A. Mukherjee, N. Atodiresei, T. K. Sen, P. Lazić, V. Caciuc, R. Michel, D. Stalke, S. K. Mandal, Nature 2013, 493, 509–513.
- 3
- 3aG. Allinson, R. J. Bushby, J. L. Paillaud, D. Oduwole, K. Sales, J. Am. Chem. Soc. 1993, 115, 2062–2064;
- 3bG. Allinson, R. J. Bushby, J.-L. Paillaud, M. Thornton-Pett, J. Chem. Soc. Perkin Trans. 1 1995, 385–390;
- 3cA. Ueda, H. Wasa, S. Nishida, Y. Kanzaki, K. Sato, D. Shiomi, T. Takui, Y. Morita, Chem. Eur. J. 2012, 18, 16272–16726;
- 3dY. Morita, S. Nishida, T. Murata, M. Moriguchi, A. Ueda, M. Satoh, K. Arifuku, K. Sato, T. Takui, Nat. Mater. 2011, 10, 947–951;
- 3eA. Ueda, H. Wasa, S. Nishida, Y. Kanzaki, K. Sato, T. Takui, Y. Morita, Chem. Asian J. 2013, 8, 2057–2063.
- 4
- 4aJ. Inoue, K. Fukui, T. Kubo, S. Nakazawa, K. Sato, D. Shiomi, Y. Morita, K. Yamamoto, T. Takui, K. Nakasuji, J. Am. Chem. Soc. 2001, 123, 12702–12703;
- 4bA. Das, T. Müller, F. Plasser, H. Lischka, J. Phys. Chem. A 2016, 120, 1625–1636.
- 5
- 5aZ. Mou, K. Uchida, T. Kubo, M. Kertesz, J. Am. Chem. Soc. 2014, 136, 18009–18022;
- 5bK. Uchida, Z. Mou, M. Kertesz, T. Kubo, J. Am. Chem. Soc. 2016, 138, 4665–4672;
- 5cJ. L. Zafra, L. Qiu, N. Yanai, T. Mori, M. Nakano, M. P. Alvarez, J. T. L. Navarrete, C. J. Gómez-García, M. Kertesz, K. Takimiya, J. Casado, Angew. Chem. Int. Ed. 2016, 55, 14563–14568; Angew. Chem. 2016, 128, 14783–14788.
- 6Z.-h. Cui, A. Gupta, H. Lischka, M. Kertesz, Phys. Chem. Chem. Phys. 2015, 17, 23963–23969.
- 7
- 7aY. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Phys. 2005, 123, 161103;
- 7bY. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput. 2006, 2, 364–382.
- 8Z.-h. Cui, H. Lischka, H. Z. Beneberu, M. Kertesz, J. Am. Chem. Soc. 2014, 136, 12958–12965.
- 9
- 9aF. Mota, J. S. Miller, J. J. Novoa, J. Am. Chem. Soc. 2009, 131, 7699–7707;
- 9bZ.-h. Cui, H. Lischka, T. Mueller, F. Plasser, M. Kertesz, ChemPhysChem 2014, 15, 165–176.
- 10D. Small, S. V. Rosokha, J. K. Kochi, M. Head-Gordon, J. Phys. Chem. A 2005, 109, 11261–11267.
- 11
- 11aR. G. Hicks, Nat. Chem. 2011, 3, 189–191;
- 11bI. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303–349;
- 11c Magnetic Properties of Organic Materials (Ed.: ), Marcel Dekker, New York, 1999;
- 11dZ. Bullard, E. C. Girão, J. R. Owens, W. A. Shelton, V. Meunier, Sci. Rep. 2015, 5, 7634.
- 12See for example, S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev. 2016, 116, 5105–5154.
- 13
- 13aP. G. Szalay, R. J. Bartlett, Chem. Phys. Lett. 1993, 214, 481–488;
- 13bP. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, R. Shepard, Chem. Rev. 2012, 112, 108–181.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.