Manganese-Catalyzed N-Formylation of Amines by Methanol Liberating H2: A Catalytic and Mechanistic Study
Dr. Subrata Chakraborty
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Urs Gellrich
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Yael Diskin-Posner
Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Gregory Leitus
Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Liat Avram
Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorCorresponding Author
Prof. Dr. David Milstein
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Subrata Chakraborty
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Urs Gellrich
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Yael Diskin-Posner
Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Gregory Leitus
Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Liat Avram
Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorCorresponding Author
Prof. Dr. David Milstein
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorAbstract
The first example of a base metal (manganese) catalyzed acceptorless dehydrogenative coupling of methanol and amines to form formamides is reported herein. The novel pincer complex (iPr-PNHP)Mn(H)(CO)2 catalyzes the reaction under mild conditions in the absence of any additives, bases, or hydrogen acceptors. Mechanistic insight based on the observation of an intermediate and DFT calculations is also provided.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201700681-sup-0001-misc_information.pdf2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. C. Chen, M. S. Bednarz, R. Zhao, J. E. Sundeen, P. Chen, Z. Shen, A. P. Skoumbourdis, J. C. Barrish, Tetrahedron Lett. 2000, 41, 5453;
- 1bK. Kobayashi, S. Nagato, M. Kawakita, O. Morikawa, H. Konishi, Chem. Lett. 1995, 24, 575;
- 1cA. Tlili, E. Blondiaux, X. Frogneux, T. Cantat, Green Chem. 2015, 17, 157;
- 1dR. Hett, Q. K. Fang, Y. Gao, S. A. Wald, C. H. Senanayake, Org. Process Res. Dev. 1998, 2, 96.
- 2K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, 3rd ed., translated by C. R. Lindley, Wiley-VCH, Weinheim, 1997.
- 3
- 3aI. M. Downie, M. J. Earle, H. Heaney, K. F. Shuhaibar, Tetrahedron 1993, 49, 4015;
- 3bS. Jones, C. J. A. Warner, Org. Biomol. Chem. 2012, 10, 2189;
- 3cS. B. Jagtap, S. B. Tsogoeva, Chem. Commun. 2006, 4747.
- 4
- 4aY. Han, L. Cai, Tetrahedron Lett. 1997, 38, 5423;
- 4bM. K. Faraj, U.S. Patent 5686645, 1997.
- 5P. G. M. Wuts, Greene's Protective Groups in Organic Synthesis, 5th ed., Wiley, Hoboken, NJ, 2014, p. 991.
- 6C. J. Gerack, L. McElwee-White, Molecules 2014, 19, 7689.
- 7
- 7aL. Zhang, Z. Han, X. Zhao, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 2015, 54, 6186; Angew. Chem. 2015, 127, 6284;
- 7bC. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuery, M. Ephritikhine, T. Cantat, Angew. Chem. Int. Ed. 2012, 51, 187; Angew. Chem. 2012, 124, 191;
- 7cC. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 9777; Angew. Chem. 2010, 122, 9971;
- 7dT. Ishida, M. Haruta, ChemSusChem 2009, 2, 538;
- 7eP. Preedasuriyachai, H. Kitahara, W. Chavasiri, H. Sakurai, Chem. Lett. 2010, 39, 1174;
- 7fT. M. El Dine, D. Evans, J. Rouden, J. Blanchet, Chem. Eur. J. 2016, 22, 5894.
- 8G. A. Olah, L. Ohannesian, M. Arvanaghi, Chem. Rev. 1987, 87, 671.
- 9
- 9ahttp://www.methanol.org/Methanol-Basics.aspx;
- 9bP. Galindo Cifre, O. Badr, Energy Convers. Manage. 2007, 48, 519.
- 10C. Gunanathan, D. Milstein, Science 2013, 341, 249.
- 11
- 11aK. Tani, A. Iseki, T. Yamagata, Chem. Commun. 1999, 1821;
- 11bW.-H. Lin, H.-F. Chang, Catal. Today 2004, 97, 181;
- 11cM. Qian, M. A. Liauw, G. Emig, Appl. Catal. A 2003, 238, 211.
- 12
- 12aJ. Moran, A. Preetz, R. A. Mesch, M. J. Krische, Nat. Chem. 2011, 3, 287;
- 12bL. K. M. Chan, D. L. Poole, D. Shen, M. P. Healy, T. J. Donohoe, Angew. Chem. Int. Ed. 2014, 53, 761; Angew. Chem. 2014, 126, 780;
- 12cS. Ogawa, Y. Obora, Chem. Commun. 2014, 50, 2491;
- 12dD. Morton, D. J. Cole-Hamilton, J. Chem. Soc. Chem. Commun. 1988, 1154;
- 12eS. Shinoda, T. Yamakawa, J. Chem. Soc. Chem. Commun. 1990, 1511;
- 12fY. Li, H. Li, H. Junge, M. Beller, Chem. Commun. 2014, 50, 14991.
- 13
- 13aM. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S. Gladiali, M. Beller, Nature 2013, 495, 85;
- 13bA. Monney, E. Barsch, P. Sponholz, H. Junge, R. Ludwig, M. Beller, Chem. Commun. 2014, 50, 707.
- 14R. E. Rodríguez-Lugo, M. Trincado, M. Vogt, F. Tewes, G. Santiso-Quinones, H. Grützmacher, Nat. Chem. 2013, 5, 342.
- 15P. Hu, Y. Diskin-Posner, Y. Ben-David, D. Milstein, ACS Catal. 2014, 4, 2649.
- 16K. Fujita, R. Kawahara, T. Aikawa, R. Yamaguchi, Angew. Chem. Int. Ed. 2015, 54, 9057; Angew. Chem. 2015, 127, 9185.
- 17
- 17aN. Ortega, C. Richter, F. Glorius, Org. Lett. 2013, 15, 1776;
- 17bS. Tanaka, T. Minato, E. Ito, M. Hara, Y. Kim, Y. Yamamoto, N. Asao, Chem. Eur. J. 2013, 19, 11832.
- 18F. Li, L. Lu, P. Liu, Org. Lett. 2016, 18, 2580.
- 19
- 19aB. Kang, S. H. Hong, Adv. Synth. Catal. 2015, 357, 834;
- 19bJ. Kothandaraman, S. Kar, R. Sen, A. Goeppert, G. A. Olah, G. K. Surya Prakash, J. Am. Chem. Soc. 2017, 139, 2549.
- 20For recent reviews on catalysis by Fe and Ni complexes, see:
- 20aI. Bauer, H.-J. Knölker, Chem. Rev. 2015, 115, 3170;
- 20bR. H. Morris, Acc. Chem. Res. 2015, 48, 1494;
- 20cP. J. Chirik, Acc. Chem. Res. 2015, 48, 1687;
- 20dS. Chakraborty, P. Bhattacharya, H. Dai, H. Guan, Acc. Chem. Res. 2015, 48, 1995;
- 20eW. McNeill, T. Ritter, Acc. Chem. Res. 2015, 48, 2330;
- 20fD. Benito-Garagorri, K. Kirchner, Acc. Chem. Res. 2008, 41, 201;
- 20gT. Zell, D. Milstein, Acc. Chem. Res. 2015, 48, 1979, and references therein.
- 21
- 21aC. Bornschein, S. Werkmeister, B. Wendt, H. Jiao, E. Alberico, W. Baumann, H. Junge, K. Junge, M. Beller, Nat. Commun. 2014, 5, 4111;
- 21bS. Chakraborty, G. Leitus, D. Milstein, Chem. Commun. 2016, 52, 1812;
- 21cJ. A. Garg, S. Chakraborty, Y. Ben-David, D. Milstein, Chem. Commun. 2016, 52, 5285;
- 21dF. Schneck, M. Assmann, M. Balmer, K. Harms, R. Langer, Organometallics 2016, 35, 1931;
- 21eT. Zell, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2014, 53, 4685; Angew. Chem. 2014, 126, 4773;
- 21fS. Werkmeister, K. Junge, B. Wendt, E. Alberico, H. Jiao, W. Baumann, H. Junge, F. Gallou, M. Beller, Angew. Chem. Int. Ed. 2014, 53, 8722; Angew. Chem. 2014, 126, 8867;
- 21gS. Chakraborty, H. Dai, P. Bhattacharya, N. T. Fairweather, M. S. Gibson, J. A. Krause, H. Guan, J. Am. Chem. Soc. 2014, 136, 7869.
- 22For Co-catalyzed (de)hydrogenation, see:
- 22aG. Zhang, B. L. Scott, S. K. Hanson, Angew. Chem. Int. Ed. 2012, 51, 12102; Angew. Chem. 2012, 124, 12268;
- 22bG. Zhang, S. K. Hanson, Org. Lett. 2013, 15, 650;
- 22cG. Zhang, K. V. Vasudevan, B. L. Scott, S. K. Hanson, J. Am. Chem. Soc. 2013, 135, 8668;
- 22dS. Rösler, J. Obenauf, R. Kempe, J. Am. Chem. Soc. 2015, 137, 7998;
- 22eT.-P. Lin, J. C. Peters, J. Am. Chem. Soc. 2014, 136, 13672;
- 22fR. P. Yu, J. M. Darmon, C. Milsmann, G. W. Margulieux, S. C. E. Stieber, S. DeBeer, P. J. Chirik, J. Am. Chem. Soc. 2013, 135, 13168;
- 22gT. J. Korstanje, J. I. van der Vlugt, C. J. Elsevier, B. de Bruin, Science 2015, 350, 298;
- 22hS. M. Jeletic, M. T. Mock, A. M. Appel, J. C. Linehan, J. Am. Chem. Soc. 2013, 135, 11533;
- 22iC. Federsel, C. Ziebart, R. Jackstell, W. Baumann, M. Beller, Chem. Eur. J. 2012, 18, 72;
- 22jN. Deibl, R. Kempe, J. Am. Chem. Soc. 2016, 138, 10786;
- 22kA. Mukherjee, D. Srimani, S. Chakraborty, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2015, 137, 8888.
- 23
- 23aE. Alberico, P. Sponholz, C. Cordes, M. Nielsen, H.-J. Drexler, W. Baumann, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 14162; Angew. Chem. 2013, 125, 14412;
- 23bE. A. Bielinski, M. Förster, Y. Zhang, W. H. Bernskoetter, N. Hazari, M. C. Holthausen, ACS Catal. 2015, 5, 2404.
- 24
- 24aA. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben David, N. A. Espinosa Jalapa, D. Milstein, J. Am. Chem. Soc. 2016, 138, 4298;
- 24bM. Mastalir, M. Glatz, N. Gorgas, B. Stöger, E. Pittenauer, G. Allmaier, L. F. Veiros, K. Kirchner, Chem. Eur. J. 2016, 22, 12316.
- 25
- 25aM. Peña-López, P. Piehl, S. Elangovan, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 14967; Angew. Chem. 2016, 128, 15191;
- 25bS. Elangovan, J. Neumann, S. Jean-Baptiste, K. Junge, C. Darcel, M. Beller, Nat. Commun. 2016, 7, 12641.
- 26
- 26aS. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann, R. Ludwig, K. Junge, M. Beller, J. Am. Chem. Soc. 2016, 138, 8809;
- 26bF. Kallmeier, T. Irrgang, T. Dietel, R. Kempe, Angew. Chem. Int. Ed. 2016, 55, 11806; Angew. Chem. 2016, 128, 11984.
- 27
- 27aS. Elangovan, M. Garbe, H. Jiao, A. Spannenberg, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 15364; Angew. Chem. 2016, 128, 15590;
- 27bN. A. Espinosa-Jalapa, A. Nerush, L. J. W. Shimon, G. Leitus, L. Avram, Y. Ben-David, D. Milstein, Chem. Eur. J. 2016, DOI: 10.1002/chem.201604991.
- 28A Mn-catalyzed methanol dehydrogenation reaction was recently reported, see: M. Andérez-Fernández, L. K. Vogt, S. Fischer, W. Zhou, H. Jiao, M. Garbe, S. Elangovan, K. Junge, H. Junge, R. Ludwig, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 559; Angew. Chem. 2017, 129, 574.
- 29
- 29aM. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc. 2016, 138, 15543;
- 29bN. Deibl, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 1663; Angew. Chem. 2017, 129, 1685;
- 29cD. H. Nguyen, X. Trivelli, F. Capet, J.-F. Paul, F. Dumeignil, R. M. Gauvin, ACS Catal. 2017, 7, 2022.
- 30S. Chakraborty, G. Leitus, D. Milstein, Angew. Chem. Int. Ed. 2017, 56, 2074; Angew. Chem. 2017, 129, 2106.
- 31D. van der Waals, L. E. Heim, C. Gedig, F. Herbrik, S. Vallazza, M. H. G. Prechtl, ChemSusChem 2016, 9, 2343.
- 32No barrier for the methanol addition to 4 or 5 with respect to the separated reactants could be identified by relaxed potential energy surface scans. A barrier resulting from solvent reorganization effects, intractable by DFT computations, cannot be excluded.
- 33CCDC 1528327 (2), 1528328 (5), and 1528329 (4) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.