Tandem Coupling of Azide with Isonitrile and Boronic Acid: Facile Access to Functionalized Amidines
Zhen Zhang
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorBaoliang Huang
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorGuanyu Qiao
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorLiu Zhu
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorFan Xiao
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorFeng Chen
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorProf. Dr. Bin Fu
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhenhua Zhang
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorZhen Zhang
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorBaoliang Huang
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorGuanyu Qiao
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorLiu Zhu
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorFan Xiao
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorFeng Chen
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorProf. Dr. Bin Fu
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhenhua Zhang
Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 China
Search for more papers by this authorAbstract
Amidine is a notable nitrogen-containing structural motif found in bioactive natural products and pharmaceuticals. Herein, a novel rhodium(I)-catalyzed tandem reaction of readily accessible azides with isonitriles and boronic acids via a carbodiimide intermediate is achieved. This protocol offers an alternative approach toward N-sulfonyl-, N-acyl-, and N- phosphoryl-functionalized, as well as general N-aryl and N-alkyl amidines with broad substrate scope. In addition, functionalized guanidines can also been synthesized when amines are used instead. The accomplishment of estrone-derived amidine and glibenclamide bioisosteres further reveals the practical utility of this strategy.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201700539-sup-0001-misc_information.pdf6.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. V. Greenhill, P. Lue, Prog. Med. Chem. 1993, 30, 203;
- 1bJ. Y. Quek, T. P. Davis, A. B. Lowe, Chem. Soc. Rev. 2013, 42, 7326;
- 1cD. Oehlrich, H. Prokopcova, H. J. Gijsen, Bioorg. Med. Chem. Lett. 2014, 24, 2033.
- 2
- 2aM.-J. Wang, Y.-Q. Liu, L.-C. Chang, C.-Y. Wang, Y.-L. Zhao, X.-B. Zhao, K. Qian, X. Nan, L. Yang, X.-M. Yang, H.-Y. Hung, J.-S. Yang, D.-H. Kuo, M. Goto, S. L. Morris-Natschke, S.-L. Pan, C.-M. Teng, S.-C. Kuo, T.-S. Wu, Y.-C. Wu, K.-H. Lee, J. Med. Chem. 2014, 57, 6008;
- 2bT. D. Suja, K. V. Divya, L. V. Naik, A. Ravi Kumar, A. Kamal, Bioorg. Med. Chem. Lett. 2016, 26, 2072.
- 3
- 3aG. Murtaza, M. K. Rauf, A. Badshah, M. Ebihara, M. Said, M. Gielen, D. De Vos, E. Dilshad, B. Mirza, Eur. J. Med. Chem. 2012, 48, 26;
- 3bR. Gul, A. Badshah, A. Khan, A. Junaid, M. K. Rauf, Spectrochim. Acta Part A 2014, 117, 264.
- 4N. A. Lebedeva, R. O. Anarbaev, M. S. Kupryushkin, N. I. Rechkunova, D. V. Pyshnyi, D. A. Stetsenko, O. I. Lavrik, Bioconjugate Chem. 2015, 26, 2046.
- 5
- 5aF. Palacios, A. M. Ochoa de Retana, J. Pagalday, Eur. J. Org. Chem. 2003, 913;
- 5bA. R. Katritzky, C. Cai, S. K. Singh, J. Org. Chem. 2006, 71, 3375;
- 5cJ. Wang, Z. He, X. Chen, W. Song, P. Lu, Y. Wang, Tetrahedron 2010, 66, 1208;
- 5dW. Phakhodee, S. Wangngae, N. Wiriya, M. Pattarawarapan, Tetrahedron Lett. 2016, 57, 5351.
- 6
- 6aC. G. Saluste, R. J. Whitby, M. Furber, Angew. Chem. Int. Ed. 2000, 39, 4156;
10.1002/1521-3773(20001117)39:22<4156::AID-ANIE4156>3.0.CO;2-B CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 4326;
- 6bK. K. R. Tetala, R. J. Whitby, M. E. Light, M. B. Hurtshouse, Tetrahedron Lett. 2004, 45, 6991;
- 6cF. Zhu, Y. Li, Z. Wang, R. V. Orru, B. U. Maes, X. F. Wu, Chem. Eur. J. 2016, 22, 7743.
- 7
- 7aI. Bae, H. Han, S. Chang, J. Am. Chem. Soc. 2005, 127, 2038;
- 7bS. H. Kim, D. Y. Jung, S. Chang, J. Org. Chem. 2007, 72, 9769;
- 7cQ. Dai, Y. Jiang, J. T. Yu, J. Cheng, Chem. Commun. 2015, 51, 16645;
- 7dJ. Kim, S. S. Stahl, J. Org. Chem. 2015, 80, 2448.
- 8
- 8aO. Tsuge, S. Kanemasa, K. Matsuda, J. Org. Chem. 1986, 51, 1997;
- 8bJ. Hellmann, I. Rhotert, H. Westenberg, R. Fröhlich, B. Wibbeling, W. Uhl, E.-U. Würthwein, Eur. J. Org. Chem. 2013, 3356;
- 8cT. Otani, X. Jiang, K. Cho, R. Araki, N. Kutsumura, T. Saito, Adv. Synth. Catal. 2015, 357, 1483.
- 9X. Xu, J. Gao, D. Cheng, J. Li, G. Qiang, H. Guo, Adv. Synth. Catal. 2008, 350, 61.
- 10
- 10aT. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829;
- 10bS. W. Youn, Eur. J. Org. Chem. 2009, 2597;
- 10cP. Tian, H.-Q. Dong, G.-Q. Lin, ACS Catal. 2012, 2, 95.
- 11T. Miura, Y. Takahashi, M. Murakami, Chem. Commun. 2007, 3577.
- 12For reviews, see:
- 12aS. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188; Angew. Chem. 2005, 117, 5320;
- 12bT. G. Driver, Org. Biomol. Chem. 2010, 8, 3831;
- 12cD. Intrieri, P. Zardi, A. Caselli, E. Gallo, Chem. Commun. 2014, 50, 11440;
- 12dK. Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015, 48, 1040.
- 13
- 13aM. Shen, B. E. Leslie, T. G. Driver, Angew. Chem. Int. Ed. 2008, 47, 5056; Angew. Chem. 2008, 120, 5134.
- 14
- 14aV. Subbarayan, J. V. Ruppel, S. Zhu, J. A. Perman, X. P. Zhang, Chem. Commun. 2009, 4266;
- 14bS. A. Cramer, D. M. Jenkins, J. Am. Chem. Soc. 2011, 133, 19342;
- 14cL. M. Jin, X. Xu, H. Lu, X. Cui, L. Wojtas, X. P. Zhang, Angew. Chem. Int. Ed. 2013, 52, 5309; Angew. Chem. 2013, 125, 5417.
- 15
- 15aH. Doi, J. Barletta, M. Suzuki, R. Noyori, Y. Watanabe, B. Långström, Org. Biomol. Chem. 2004, 2, 3063;
- 15bL. Ren, N. Jiao, Chem. Commun. 2014, 50, 3706;
- 15cJ. Zhao, Z. Li, S. Song, M.-A. Wang, B. Fu, Z. Zhang, Angew. Chem. Int. Ed. 2016, 55, 5545; Angew. Chem. 2016, 128, 5635.
- 16
- 16aR. E. Cowley, M. R. Golder, N. A. Eckert, M. H. Al-Afyouni, P. L. Holland, Organometallics 2013, 32, 5289;
- 16bS. Wiese, M. J. B. Aguila, E. Kogut, T. H. Warren, Organometallics 2013, 32, 2300;
- 16cK. Chen, X. Y. Tang, M. Shi, Chem. Commun. 2016, 52, 1967.
- 17
- 17aZ. Zhang, Z. Li, B. Fu, Z. Zhang, Chem. Commun. 2015, 51, 16312;
- 17bZ. Zhang, F. Xiao, B. Huang, J. Hu, B. Fu, Z. Zhang, Org. Lett. 2016, 18, 908.
- 18For more details about the optimization of reaction conditions and the substrate generality, see the Tables S1–S4 in the Supporting Information.
- 19
- 19aC. Alonso-Moreno, A. Antiñolo, F. Carrillo-Hermosilla, A. Otero, Chem. Soc. Rev. 2014, 43, 3406;
- 19bW.-X. Zhang, L. Xu, Z. Xi, Chem. Commun. 2015, 51, 254.
- 20J. S. Kulkarni, A. A. Metha, D. D. Santani, R. K. Goyal, Pharm. Res. 2002, 46, 101.
- 21
- 21aR. Ouedraogo, Q. A. Nguyen, M. H. Kane, M. J. Dunne, L. Pochet, B. Masereel, P. Lebrun, J. Pharmacol. Exp. Ther. 1999, 289, 625;
- 21bQ. A. Nguyen, M. H. Antoine, R. Ouedraogo, M. Hermann, J. Sergooris, B. Pirotte, B. Masereel, P. Lebrun, Biochem. Pharmacol. 2002, 63, 515.
- 22P. Zhao, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 1876.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.