Alkenyl Isocyanide Conjugate Additions: A Rapid Route to γ-Carbolines
Dr. Sergiy V. Chepyshev
Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA, 19104 USA
Search for more papers by this authorProf. J. Armando Lujan-Montelongo
Departmento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360 México
Search for more papers by this authorAllen Chao
Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA, 19104 USA
Search for more papers by this authorCorresponding Author
Prof. Fraser F. Fleming
Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA, 19104 USA
Search for more papers by this authorDr. Sergiy V. Chepyshev
Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA, 19104 USA
Search for more papers by this authorProf. J. Armando Lujan-Montelongo
Departmento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360 México
Search for more papers by this authorAllen Chao
Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA, 19104 USA
Search for more papers by this authorCorresponding Author
Prof. Fraser F. Fleming
Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA, 19104 USA
Search for more papers by this authorAbstract
Isocyanides are exceptional building blocks, the wide deployment of which in multicomponent and metal-insertion reactions belies their limited availability. The first conjugate addition/alkylation to alkenyl isocyanides is described, which addresses this deficiency. An array of organolithiums, magnesiates, enolates, and metalated nitriles add conjugately to β- and β,β-disubstituted arylsulfonyl alkenyl isocyanides to rapidly assemble diverse isocyanide scaffolds. The intermediate metalated isocyanides are efficiently trapped with electrophiles to generate substituted isocyanides incorporating contiguous tri- and tetra-substituted centers. The substituted isocyanides are ideally functionalized for elaboration into synthetic targets as illustrated by the three-step synthesis of γ-carboline N-methyl ingenine B.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201612574-sup-0001-misc_information.pdf12.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Suginome, Y. Ito in Science of Synthesis, Vol. 19 (Ed.: ), Thieme, Stuttgart, 2004, pp. 445–530.
- 2R. Ramozzi, N. Chéron, B. Braïda, P. C. Hiberty, P. Fleurat-Lessard, New J. Chem. 2012, 36, 1137.
- 3S. Chakrabarty, S. Choudhary, A. Doshi, F.-Q. Liu, R. Mohan, M. P. Ravindra, D. Shah, X. Yang, F. F. Fleming, Adv. Synth. Catal. 2014, 356, 2135.
- 4B. Zhang, A. Studer, Chem. Soc. Rev. 2015, 44, 3505.
- 5
- 5aJ. Zhu, Q. Wang, M.-X. Wang, Multicomponent Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2014;
10.1002/9783527678174 Google Scholar
- 5bA. Dömling, Chem. Rev. 2006, 106, 17;
- 5cJ. Zhu, Eur. J. Org. Chem. 2003, 1133.
- 6V. G. Nenajdenko, Isocyanide Chemistry: Applications in Synthesis and Material Science, Wiley-VCH, Weinheim, 2012.
10.1002/9783527652532 Google Scholar
- 7
- 7aI. Mancini, G. Guella, A. Defant, Mini-Rev. Med. Chem. 2008, 8, 1265;
- 7bM. J. Garson, J. S. Simpson, Nat. Prod. Rep. 2004, 21, 164;
- 7cC. W. J. Chang, Prog. Chem. Org. Nat. Prod. 2000, 80, 1;
- 7dM. S. Edenborough, R. B. Herbert, Nat. Prod. Rep. 1988, 5, 229.
- 8M. Lazar, R. J. Angelici in Modern Surface Organometallic Chemistry (Eds.: ), Wiley-VCH, Weinheim, 2009, chap. 13, pp. 513–556.
10.1002/9783527627097.ch13 Google Scholar
- 9A. D. Huters, E. D. Styduhar, N. K. Garg, Angew. Chem. Int. Ed. 2012, 51, 3758; Angew. Chem. 2012, 124, 3820.
- 10U. Schöllkopf, R. Meyer, Angew. Chem. Int. Ed. Engl. 1975, 14, 629; Angew. Chem. 1975, 87, 624.
- 11
- 11aM. Honma, M. Kirihata, Y. Uchimura, I. Ichimoto, Biosci. Biotechnol. Biochem. 1993, 57, 659;
- 11bM. Kirihata, A. Sakamoto, I. Ichimoto, H. Ueda, M. Honma, Agric. Biol. Chem. 1990, 54, 1845;
- 11cU. Schöllkopf, R. Harms, D. Hoppe, Justus Liebigs Ann. Chem. 1973, 611.
- 12A. M. Van Leusen, J. Wildeman, Recl. Trav. Chim. Pays-Bas 1982, 101, 202.
- 13
- 13aE. Hevia, J. Z. Chua, P. García-Álvarez, A. R. Kennedy, M. D. McCall, Proc. Natl. Acad. Sci. USA 2010, 107, 5294;
- 13bS. Merkel, D. Stern, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 6350; Angew. Chem. 2009, 121, 6468.
- 14A. El-Awa, M. N. Noshi, X. M. du Jourdin, P. L. Fuchs, Chem. Rev. 2009, 109, 2315.
- 15
- 15aF. Mongin, A. Harrison-Marchand, Chem. Rev. 2013, 113, 7563;
- 15bA. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 159; Angew. Chem. 2006, 118, 165.
- 16Some isocyanides are hydrolyzed during silica gel chromatography while others exhibit a pronounced tendency toward irreversible adsorption:
- 16aS. Kotha, N. Sreenivasachary, Bioorg. Med. Chem. Lett. 1998, 8, 257;
- 16bS. Kotha, E. Brahmachary, N. Sreenivasachary, Tetrahedron Lett. 1998, 39, 4095.
- 17J. A. Lujan-Montelongo, A. O. Estevez, F. F. Fleming, Eur. J. Org. Chem. 2015, 1602.
- 18M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem. Int. Ed. 2004, 43, 2206; Angew. Chem. 2004, 116, 2256.
- 19Two exceptions are vinyllithium (17 % yield of the conjugate adduct) and tBuLi; the main product is an unstable imine resulting from addition to the isocyanide.
- 20J. G. Sośnicki, Tetrahedron Lett. 2006, 47, 6809.
- 21D. van Leusen, A. M. van Leusen, Synthesis 1991, 531.
- 22The diastereomeric ratios were determined by 1H NMR integration of diagnostic methine signals in the crude reaction mixture.
- 23(1S*, 2S*)-8 d was a crystalline solid, the structure of which was determined by X-ray crystallography. Determination of the relative stereochemistry for (1S*, 2S*)-8 d allowed assignment of the diagnostic methine signals that provided a signature for the assignments of the isocyanides 8 in Table 1. P. Radha Krishna, Y. L. Prapurna, Synlett 2009, 2613.
- 24A. M. van Leusen, R. J. Bouma, O. Possel, Tetrahedron Lett. 1975, 16, 3487.
10.1016/S0040-4039(00)91390-X Google Scholar
- 25
- 25aA. S. Pilipenko, M. G. Uchuskin, I. V. Trushkov, A. V. Butin, Tetrahedron 2015, 71, 8786;
- 25bF. Nissen, V. Richard, C. Alayrac, B. Witulski, Chem. Commun. 2011, 47, 6656;
- 25cS. Ding, Z. Shi, N. Jiao, Org. Lett. 2010, 12, 1540;
- 25dR. S. Alekseyev, A. V. Kurkin, M. A. Yurovskaya, Chem. Heterocycl. Compd. 2009, 45, 889.
- 26
- 26aM. T. A. Salim, Y. Goto, T. Hamasaki, M. Okamoto, H. Aoyama, Y. Hashimoto, S. Musiu, J. Paeshuyse, J. Neyts, M. Froeyen, P. Herdewijn, M. Baba, Antiviral Res. 2010, 88, 263;
- 26bJ. Chen, X. Dong, T. Liu, J. Lou, C. Jiang, W. Huang, Q. He, B. Yang, Y. Hu, Bioorg. Med. Chem. 2009, 17, 3324.
- 27Although treating the (1S*, 2S*)-diastereomer with TFA afforded a complex mixture, the (1S*, 2S*) diastereomers were readily equilibrated with t-BuOK.
- 28T. Livinghouse, Tetrahedron 1999, 55, 9947.
- 29H. Zhang, PhD thesis, Iowa State University (IA), 2003.
- 30H. Aoyama, K. Sako, S. Sato, M. Nakamura, H. Miyachi, Y. Goto, M. Okamoto, M. Baba, Y. Hashimoto, Heterocycles 2009, 77, 779.
- 31Ingenine B, des-methyl 20, exhibits pronounced cytotoxicity against murine lymphoma: S. R. M. Ibrahim, G. A. Mohamed, M. F. Zayed, H. M. Sayed, Drug Res. 2015, 65, 361.
- 32See the Supporting Information for synthetic details.
- 33Equilibration of (1S*, 2S*)-19 with t-BuOK afforded a 1:1 ratio of (1S*, 2S*)- and (1S*, 2R*)-19, the purification of which afforded pure (1S*, 2R*)-19 (37 %), pure (1S*, 2S*)-19 (35 %), and a 1:1 mixture of (1S*,2R*)- and (1S*,2S*)-19 (15 %).
- 34An oxidative demethylation was successfully performed on 16 a but application of the same sequence to N-methyl ingenine B (20) caused significant degradation.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.