Four-Shell Polyoxometalates Featuring High-Nuclearity Ln26 Clusters: Structural Transformations of Nanoclusters into Frameworks Triggered by Transition-Metal Ions
Zhong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorDr. Xin-Xiong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorTao Yang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorZhen-Wen Cai
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shou-Tian Zheng
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorZhong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorDr. Xin-Xiong Li
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorTao Yang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorZhen-Wen Cai
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shou-Tian Zheng
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
Search for more papers by this authorAbstract
A series of polyoxometalates (POMs) that incorporate the highest-nuclearity Ln clusters that have been observed in such structures to date (Ln26 , Ln=La and Ce) are described, which exhibit giant multishell configurations (Ln⊂W6⊂Ln26⊂W100). Their structures are remarkably different from known giant POMs that feature multiple Ln ions. In particular, the incorporated Ln–O clusters with a nuclearity of 26 are significantly larger than known high-nuclearity (≤10) Ln–O clusters in POM chemistry. Furthermore, they also contain the largest number of La and Ce centers for any POM reported to date and represent a new kind of rare giant POMs with more than 100 W atoms. Interestingly, the La26-containing POM can undergo a single-crystal to single-crystal structural transformation in the presence of various transition-metal ions, such as Cu2+, Co2+, and Ni2+, from an inorganic molecular nanocluster into an inorganic–organic hybrid extended framework that is built from POM building blocks with even higher-nuclearity La28 clusters bridged by transition-metal complexes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201612046-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Dolbecq, E. Dumas, C. R. Mayer, P. Mialane, Chem. Rev. 2010, 110, 6009–6048;
- 1bO. Oms, A. Dolbecq, P. Mialane, Chem. Soc. Rev. 2012, 41, 7497–7536;
- 1cJ. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Chem. Soc. Rev. 2012, 41, 7464–7478;
- 1dN. V. Izarova, M. T. Pope, U. Kortz, Angew. Chem. Int. Ed. 2012, 51, 9492–9510; Angew. Chem. 2012, 124, 9630–9649;
- 1eR. Al-Oweini, A. Sartorel, B. S. Bassil, M. Natali, S. Berardi, F. Scandola, U. Kortz, M. Bonchio, Angew. Chem. Int. Ed. 2014, 53, 11182–11185; Angew. Chem. 2014, 126, 11364–11367;
- 1fH. G. T. Ly, G. Absillis, R. Janssens, P. Proost, T. N. Parac-Vogt, Angew. Chem. Int. Ed. 2015, 54, 7391–7394; Angew. Chem. 2015, 127, 7499–7502;
- 1gT. Quanten, P. Shestakova, D. V. D. Bulck, C. Kirschhock, T. N. Parac-Vogt, Chem. Eur. J. 2016, 22, 3775–3784G.
- 2
- 2aH. N. Miras, J. Yan, D. L. Long, L. Cronin, Chem. Soc. Rev. 2012, 41, 7403–7430;
- 2bR. S. Winter, J. M. Cameron, L. Cronin, J. Am. Chem. Soc. 2014, 136, 12753–12761;
- 2cY. F. Song, R. Tsunashima, Chem. Soc. Rev. 2012, 41, 7384–7402;
- 2dJ. Cao, J. D. Liu, T. T. Zhuang, X. H. Cai, S. T. Zheng, Chem. Commun. 2015, 51, 2048–2051;
- 2eG. Rousseau, S. Zhang, O. Oms, A. Dolbecq, J. Marrot, R. Liu, X. Shang, G. Zhang, B. Keita, P. Mialane, Chem. Eur. J. 2015, 21, 12153–12160.
- 3
- 3aB. S. Bassil, M. Ibrahim, R. Al-Oweini, M. Asano, Z. Wang, J. von Tol, N. S. Dalal, K. Y. Choi, R. N. Biboum, B. Keita, L. Nadjo, U. Kortz, Angew. Chem. Int. Ed. 2011, 50, 5961–5964; Angew. Chem. 2011, 123, 6083–6087;
- 3bB. Godin, Y. G. Chen, J. Vaissermann, L. Ruhlmann, M. Verdaguer, P. Gouzerh, Angew. Chem. Int. Ed. 2005, 44, 3072–3075; Angew. Chem. 2005, 117, 3132–3135;
- 3cM. Ibrahim, Y. Lan, B. S. Bassil, Y. Xiang, A. Suchopar, A. K. Powell, U. Kortz, Angew. Chem. Int. Ed. 2011, 50, 4708–4711; Angew. Chem. 2011, 123, 4805–4808;
- 3dX. B. Han, Y. G. Li, Z. M. Zhang, H. Q. Tan, Y. Lu, E. B. Wang, J. Am. Chem. Soc. 2015, 137, 5486–5493;
- 3eL. Huang, S. S. Wang, J. W. Zhao, L. Cheng, G. Y. Yang, J. Am. Chem. Soc. 2014, 136, 7637–7642;
- 3fC. Zhan, J. M. Cameron, J. Gao, J. W. Purcell, D. L. Long, L. Cronin, Angew. Chem. Int. Ed. 2014, 53, 10362–10366; Angew. Chem. 2014, 126, 10530–10534.
- 4
- 4aS. S. Mal, U. Kortz, Angew. Chem. Int. Ed. 2005, 44, 3777–3780; Angew. Chem. 2005, 117, 3843–3846;
- 4bB. S. Bassil, S. S. Mal, M. H. Dickman, U. Kortz, H. Oelrich, L. Walder, J. Am. Chem. Soc. 2008, 130, 6696–6697;
- 4cX. B. Han, Z. M. Zhang, T. Zhang, Y. G. Li, W. Lin, W. You, Z. M. Su, E. B. Wang, J. Am. Chem. Soc. 2014, 136, 5359–5366;
- 4dJ. Niu, F. Li, J. Zhao, P. Ma, D. Zhang, B. Bassil, U. Kortz, J. Wang, Chem. Eur. J. 2014, 20, 9852–9857;
- 4eZ. Liang, D. Zhang, P. Ma, J. Niu, J. Wang, Chem. Eur. J. 2015, 21, 8380–8383;
- 4fL. Jin, X. X. Li, Y. J. Qi, P. P. Niu, S. T. Zheng, Angew. Chem. Int. Ed. 2016, 55, 13793–13797; Angew. Chem. 2016, 128, 13997–14001.
- 5
- 5aW. C. Chen, H. L. Li, X. L. Wang, K. Z. Shao, Z. M. Su, E. B. Wang, Chem. Eur. J. 2013, 19, 11007–11015;
- 5bW. C. Chen, X. L. Wang, Y. Q. Jiao, P. Huang, E. L. Zhou, Z. M. Su, K. Z. Shao, Inorg. Chem. 2014, 53, 3269–3271;
- 5cK. Y. Wang, B. S. Bassil, Z. Lin, I. Römer, S. Vanhaecht, T. N. Parac-Vogt, C. S. de Pipaón, J. R. Galán-Mascarós, L. Fan, J. Cao, U. Kortz, Chem. Eur. J. 2015, 21, 18168–18176;
- 5dX. Ma, W. Yang, L. Chen, J. Zhao, CrystEngComm 2015, 17, 8175–8197;
- 5eH. Li, W. Yang, X. Wang, Li. Chen, J. Ma, L. Zheng, J. Zhao, Cryst. Growth Des. 2016, 16, 108–120.
- 6
- 6aC. Ritchie, E. G. Moore, M. Speldrich, P. Kögerler, C. Boskovic, Angew. Chem. Int. Ed. 2010, 49, 7702–7705; Angew. Chem. 2010, 122, 7868–7871;
- 6bJ. Niu, X. Zhang, D. Yang, J. Zhao, P. Ma, U. Kortz, J. Wang, Chem. Eur. J. 2012, 18, 6759–6762;
- 6cY. Kikukawa, K. Suzuki, M. Sugawa, T. Hirano, K. Kamata, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 3686–3690; Angew. Chem. 2012, 124, 3746–3750;
- 6dK. Suzuki, F. Tang, Y. Kikukawa, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2014, 53, 5356–5360; Angew. Chem. 2014, 126, 5460–5464;
- 6eW. Xuan, A. J. Surman, H. N. Miras, D. L. Long, L. Cronin, J. Am. Chem. Soc. 2014, 136, 14114–14120;
- 6fX. Fang, T. M. Anderson, C. Benelli, C. L. Hill, Chem. Eur. J. 2005, 11, 712–718.
- 7
- 7aP. T. Ma, R. Wan, Y. Y. Wang, F. Hu, D. D. Zhang, J. Y. Niu, J. P. Wang, Inorg. Chem. 2016, 55, 918–924;
- 7bR. C. Howell, F. G. Perez, S. Jain, W. D. Horrocks, J. A. L. Rheingold, L. C. Francesconi, Angew. Chem. Int. Ed. 2001, 40, 4031–4034;
10.1002/1521-3773(20011105)40:21<4031::AID-ANIE4031>3.0.CO;2-8 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4155–4158;
- 7cB. S. Bassil, M. H. Dickman, I. Römer, B. von der Kammer, U. Kortz, Angew. Chem. Int. Ed. 2007, 46, 6192–6195; Angew. Chem. 2007, 119, 6305–6308;
- 7dS. Reinoso, M. Giménez-Marqués, J. R. Galán-Mascarós, P. Vitoria, J. M. Gutiérrez-Zorrilla, Angew. Chem. Int. Ed. 2010, 49, 8384–8388; Angew. Chem. 2010, 122, 8562–8566;
- 7eM. Ibrahim, V. Mereacre, N. Leblanc, W. Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem. Int. Ed. 2015, 54, 15574–15578; Angew. Chem. 2015, 127, 15795–15799.
- 8
- 8aF. Hussain, F. Conrad, G. R. Patzke, Angew. Chem. Int. Ed. 2009, 48, 9088–9091; Angew. Chem. 2009, 121, 9252–9255;
- 8bX. Fang, P. Kögerler, Y. Furukawa, M. Speldrich, M. Luban, Angew. Chem. Int. Ed. 2011, 50, 5212–5216; Angew. Chem. 2011, 123, 5318–5322;
- 8cA. R. de la Oliva, V. Sans, H. N. Miras, J. Yan, H. Zang, C. J. Richmond, D. L. Long, L. Cronin, Angew. Chem. Int. Ed. 2012, 51, 12759–12762; Angew. Chem. 2012, 124, 12931–12934;
- 8dB. Artetxe, S. Reinoso, L. S. Felices, J. M. Gutiérrez-Zorrilla, J. A. García, F. Haso, T. Liu, C. Vicent, Chem. Eur. J. 2015, 21, 7736–7745.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.