Rhodium(I)-Catalyzed Intermolecular Aza-[4+3] Cycloaddition of Vinyl Aziridines and Dienes: Atom-Economical Synthesis of Enantiomerically Enriched Functionalized Azepines
Chao-Ze Zhu
Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jian-Jun Feng
Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junliang Zhang
Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorChao-Ze Zhu
Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jian-Jun Feng
Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junliang Zhang
Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 P. R. China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorAbstract
A new synthetic application of vinyl aziridines as N-containing three-atom components in a rhodium-catalyzed [4+3] cycloaddition reaction is described. The reaction proceeds well with various silyl dienol ethers and vinyl aziridines, and enables the efficient synthesis of highly functionalized azepines in an enantioselective manner with net inversion of absolute configuration. The salient features of the transformation include the use of readily available substrates, high selectivity, and mild reaction conditions, as well as the versatile functionalization of the products.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201609608-sup-0001-misc_information.pdf6.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. K. Smalley in Comprehensive Heterocyclic Chemistry, Vol. 7 (Eds.: ), Pergamon, Oxford, 1984, pp. 491–546;
10.1016/B978-008096519-2.00122-3 Google Scholar
- 1bW.-H. Lin, Y. Ye, R.-S. Xu, J. Nat. Prod. 1992, 55, 571;
- 1cG. K. Jana, S. Sinha, Tetrahedron Lett. 2010, 51, 1994;
- 1dJ. A. Beutler, A. N. Brubaker, Drugs Future 1987, 12, 957;
- 1eS. Shiotani, T. Kometani, K. Mitsuhasi, T. Nozawa, A. Kurobe, O. Futsukaichi, J. Med. Chem. 1976, 19, 803;
- 1fM. E. Kuehne, J. B. Pitner, J. Org. Chem. 1989, 54, 4553;
- 1gC. Draghici, T. Wang, D. A. Spiegel, Science 2015, 350, 294.
- 2For representative classical methods for azepine synthesis, see:
- 2aM. E. Maier, Angew. Chem. Int. Ed. 2000, 39, 2073;
10.1002/1521-3773(20000616)39:12<2073::AID-ANIE2073>3.0.CO;2-0 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 2153;
- 2bP. Jakubec, A. Hawkins, W. Felzmann, D. J. Dixon, J. Am. Chem. Soc. 2012, 134, 17482;
- 2cT. J. V. Bergen, R. M. Kellogg, J. Org. Chem. 1971, 36, 978;
- 2dN. Finch, L. Blanchard, L. H. Werner, J. Org. Chem. 1977, 42, 3933;
- 2eM. Qadir, J. Cobb, P. W. Sheldrake, N. Whittall, A. J. P. White, K. K. Hill, P. N. Horton, M. B. Hursthouse, J. Org. Chem. 2005, 70, 1545;
- 2fL. Yet, Tetrahedron 1999, 55, 9349;
- 2g Comprehensive Heterocyclic Chemistry II, Vol. 9 (Ed.: ), Pergamon, New York, 1996, p. 21;
- 2hZ.-H. Chen, Z.-M. Chen, Y.-Q. Zhang, Y.-Q. Tu, F.-M. Zhang, J. Org. Chem. 2011, 76, 10173;
- 2iC.-V. T. Vo, M. U. Luescher, J. W. Bode, Nat. Chem. 2014, 6, 310;
- 2jL. Wang, J. Huang, S. Peng, H. Liu, X. Jiang, J. Wang, Angew. Chem. Int. Ed. 2013, 52, 1768; Angew. Chem. 2013, 125, 1812;
- 2kS. Baktharaman, N. Afagh, A. Vandersteen, A. K. Yudin, Org. Lett. 2010, 12, 240;
- 2lG. Yin, Y. Zhu, P. Lu, Y. Wang, J. Org. Chem. 2011, 76, 8922;
- 2mI. Nakamura, M. Okamoto, Y. Sato, M. Terada, Angew. Chem. Int. Ed. 2012, 51, 10816; Angew. Chem. 2012, 124, 10974;
- 2nZ. Shi, C. Grohmann, F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 5393; Angew. Chem. 2013, 125, 5503;
- 2oJ.-M. Yang, C.-Z. Zhu, X.-Y. Tang, M. Shi, Angew. Chem. Int. Ed. 2014, 53, 5142; Angew. Chem. 2014, 126, 5242.
- 3For the synthesis of azepines in an enantioselective manner by catalytic methods, see:
- 3aH. He, W.-B. Liu, L.-X. Dai, S.-L. You, Angew. Chem. Int. Ed. 2010, 49, 1496; Angew. Chem. 2010, 122, 1538;
- 3bS. J. Malcolmson, S. J. Meek, E. S. Sattely, R. R. Schrock, A. H. Hoveyda, Nature 2008, 456, 933;
- 3cR. Rohlmann, C.-G. Daniliuc, O. G. Mancheño, Chem. Commun. 2013, 49, 11665;
- 3dJ.-J. Feng, T.-Y. Lin, H.-H. Wu, J. Zhang, J. Am. Chem. Soc. 2015, 137, 3787;
- 3eC. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2016, 138, 7840;
- 3fL. Huang, L.-X. Dai, S.-L. You, J. Am. Chem. Soc. 2016, 138, 5793.
- 4For representative examples of the synthesis of azepines by [5+2] and [3+2+2] cycloaddition reactions, see: [5+2]:
- 4aP. A. Wender, T. M. Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154;
- 4bM. Merced Montero-Campillo, E. M. Cabaleiro-Lago, J. Rodríguez-Otero, J. Phys. Chem. A 2008, 112, 9068;
- 4cM.-B. Zhou, R.-J. Song, C.-Y. Wang, J.-H. Li, Angew. Chem. Int. Ed. 2013, 52, 10805; Angew. Chem. 2013, 125, 11005;
- 4dY. Yang, M.-B. Zhou, X.-H. Ouyang, R. Pi, R.-J. Song, J.-H. Li, Angew. Chem. Int. Ed. 2015, 54, 6595; Angew. Chem. 2015, 127, 6695;
- 4eC. Hu, R.-J. Song, M. Hu, Y. Yang, J.-H. Li, S. Luo, Angew. Chem. Int. Ed. 2016, 55, 10423; Angew. Chem. 2016, 128, 10579;
- 4fN. Iqbal, A. Fiksdahl, J. Org. Chem. 2013, 78, 7885;
- 4gR. Shenje, M. C. Martin, S. France, Angew. Chem. Int. Ed. 2014, 53, 13907; Angew. Chem. 2014, 126, 14127;
- 4hL. Cui, L. Ye, L. Zhang, Chem. Commun. 2010, 46, 3351; [3+2+2]:
- 4iM.-B. Zhou, R.-J. Song, J.-H. Li, Angew. Chem. Int. Ed. 2014, 53, 4196; Angew. Chem. 2014, 126, 4280;
- 4jT. Li, F. Xu, X. Li, C. Wang, B. Wan, Angew. Chem. Int. Ed. 2016, 55, 2861; Angew. Chem. 2016, 128, 2911.
- 5For representative examples of the synthesis of azepines by [4+3] cycloaddition reactions, see:
- 5aN. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244;
- 5bH. Liu, X. Li, Z. Chen, W.-X. Hu, J. Org. Chem. 2012, 77, 5184;
- 5cG. Zhan, M.-L. Shi, Q. He, W. Du, Y.-C. Chen, Org. Lett. 2015, 17, 4750;
- 5dC. S. Jeffrey, K. L. Barnes, J. A. Eickhoff, C. R. Carson, J. Am. Chem. Soc. 2011, 133, 7688;
- 5eA. Acharya, J. A. Eickhoff, C. S. Jeffrey, Synthesis 2013, 45, 1825;
- 5fE. E. Schultz, V. N. G. Lindsay, R. Sarpong, Angew. Chem. Int. Ed. 2014, 53, 9904; Angew. Chem. 2014, 126, 10062;
- 5gY. Tian, Y. Wang, H. Shang, X. Xu, Y. Tang, Org. Biomol. Chem. 2015, 13, 612;
- 5hH. Shang, Y. Wang, Y. Tian, J. Fang, Y. Tang, Angew. Chem. Int. Ed. 2014, 53, 5662; Angew. Chem. 2014, 126, 5768;
- 5iS. Kim, J. Mo, J. Kim, T. Ryu, P. H. Lee, Asian J. Org. Chem. 2014, 3, 926;
- 5jK. Liu, H.-L. Teng, C.-J. Wang, Org. Lett. 2014, 16, 4508.
- 6For reviews of [4+3] cycloaddition reactions, see:
- 6aM. Harmata, Chem. Commun. 2010, 46, 8904;
- 6bM. Harmata, Chem. Commun. 2010, 46, 8886;
- 6cM. A. Battiste, P. M. Pelphrey, D. L. Wright, Chem. Eur. J. 2006, 12, 3438;
- 6dI. V. Hartung, H. M. R. Hoffmann, Angew. Chem. Int. Ed. 2004, 43, 1934; Angew. Chem. 2004, 116, 1968;
- 6eJ. K. Cha, J. Oh, Curr. Org. Chem. 1998, 2, 217;
- 6fA. G. Lohse, R. P. Hsung, Chem. Eur. J. 2011, 17, 3812; for recent examples, see:
- 6gD. Shu, W. Song, X. Li, W. Tang, Angew. Chem. Int. Ed. 2013, 52, 3237; Angew. Chem. 2013, 125, 3319;
- 6hH. Xu, J.-L. Hu, L. Wang, S. Liao, Y. Tang, J. Am. Chem. Soc. 2015, 137, 8006.
- 7For reviews on the chemistry of vinyl aziridines, see:
- 7a Aziridines and Epoxides in Organic Synthesis (Ed. ), Wiley-VCH, Weinheim, 2005;
- 7bD. J. Mack, J. T. Njardarson, ACS Catal. 2013, 3, 272;
- 7cH. Ohno, Chem. Rev. 2014, 114, 7784; for selected examples of the [3+2] cycloaddition of vinyl aziridines, see:
- 7dK. Aoyagi, H. Nakamura, Y. Yamamoto, J. Org. Chem. 2002, 67, 5977;
- 7eM. A. Lowe, M. Ostovar, S. Ferrini, C. C. Chen, P. G. Lawrence, F. Fontana, A. A. Calabrese, V. K. Aggarwal, Angew. Chem. Int. Ed. 2011, 50, 6370; Angew. Chem. 2011, 123, 6494;
- 7fG. Arena, C. C. Chen, D. Leonori, V. K. Aggarwal, Org. Lett. 2013, 15, 4250;
- 7gC.-F. Xu, B.-H. Zheng, J.-J. Suo, C.-H. Ding, X.-L. Hou, Angew. Chem. Int. Ed. 2015, 54, 1604; Angew. Chem. 2015, 127, 1624;
- 7hJ.-J. Hirner, K. E. Roth, Y. Shi, S. A. Blum, Organometallics 2012, 31, 6843;
- 7iT. Hashimoto, K. Takino, K. Hato, K. Maruoka, Angew. Chem. Int. Ed. 2016, 55, 8081; Angew. Chem. 2016, 128, 8213;
- 7jT.-R. Li, B.-Y. Cheng, S.-Q. Fan, Y.-N. Wang, L.-Q. Lu, W.-J. Xiao, Chem. Eur. J. 2016, 22, 6243.
- 8J.-J. Feng, T.-Y. Lin, C.-Z. Zhu, H. Wang, H.-H. Wu, J. Zhang, J. Am. Chem. Soc. 2016, 138, 2178.
- 9
- 9aS. K. Lam, S. Lam, W.-T. Wong, P. Chiu, Chem. Commun. 2014, 50, 1738;
- 9bW. K. Chung, S. K. Lam, B. Lo, L. L. Liu, W.-T. Wong, P. Chiu, J. Am. Chem. Soc. 2009, 131, 4556;
- 9cB. Lo, S. Lam, W.-T. Wong, P. Chiu, Angew. Chem. Int. Ed. 2012, 51, 12120; Angew. Chem. 2012, 124, 12286.
- 10C. Defieber, H. Grützmacher, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 4482; Angew. Chem. 2008, 120, 4558.
- 11CCDC 1487211 ((S)-3 ad) and 1487212 ((S,S)-10 an) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 12Other silyl dienol ethers and N-protected vinyl aziridines were also tested. However, the reaction of 1-substituted or 4-substituted 2-silyloxy-1,3-dienes with (R)-1 a afforded valuable γ-amino ketones 4 and [3+2] cycloadducts 10 with high diastereoselectivity and stereospecificity (see Figure S1 in the Supporting Information).
- 13
- 13aK. Inanaga, K. Takasu, M. Ihara, J. Am. Chem. Soc. 2005, 127, 3668;
- 13bE. Wenkert, T. S. Arrhenius, B. Bookser, M. Guo, P. Mancini, J. Org. Chem. 1990, 55, 1185.
- 14
- 14aP. A. Evans, D. Uraguchi, J. Am. Chem. Soc. 2003, 125, 7158; for pioneering work on the enyl (σ+π) rhodium species, see:
- 14bP. A. Evans, J. D. Nelson, J. Am. Chem. Soc. 1998, 120, 5581.
- 15The proposed mechanism is outlined in detail in Figure S2 of the Supporting Information.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.