Enhanced Performance of a Lithium–Sulfur Battery Using a Carbonate-Based Electrolyte
Zhixin Xu
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Jiulin Wang
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Jun Yang
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorXiaowei Miao
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Renjie Chen
School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorJi Qian
School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorRongrong Miao
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorZhixin Xu
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Jiulin Wang
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Jun Yang
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorXiaowei Miao
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Renjie Chen
School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorJi Qian
School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorRongrong Miao
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorAbstract
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC-DMC-FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g−1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g−1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self-discharge phenomena.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201605931-sup-0001-misc_information.pdf1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419–2430;
- 1bJ. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167–1176;
- 1cK. Amine, R. Kanno, Y. Tzeng, MRS Bull. 2014, 39, 395–401.
- 2G. Pistoia, Elsevier, 2014.
- 3
- 3aJ. Hassoun, B. Scrosati, Angew. Chem. Int. Ed. 2010, 49, 2371–2374; Angew. Chem. 2010, 122, 2421–2424;
- 3bX. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500–506;
- 3cN. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904–5908; Angew. Chem. 2011, 123, 6026–6030.
- 4
- 4aG. Ma, Z. Wen, J. Jin, M. Wu, X. Wu, J. Zhang, J. Power Sources 2014, 267, 542–546;
- 4bS. J. Oh, J. K. Lee, W. Y. Yoon, ChemSusChem 2014, 7, 2562–2566;
- 4cZ. Liu, X.-H. Zhang, C. S. Lee, J. Mater. Chem. A 2014, 2, 5602–5605.
- 5
- 5aJ. Scheers, S. Fantini, P. Johansson, J. Power Sources 2014, 255, 204–218;
- 5bA. Manthiram, Y. Fu, S. H. Chung, C. Zu, Y. S. Su, Chem. Rev. 2014, 114, 11751–11787.
- 6L. Suo, Y. S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481.
- 7
- 7aS. S. Zhang, Electrochim. Acta 2012, 70, 344–348;
- 7bX. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, J. Power Sources 2011, 196, 9839–9843;
- 7cF. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, et al., J. Am. Chem. Soc. 2013, 135, 4450–4456.
- 8J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J. Zhang, Nat. Commun. 2015, 6, 6362.
- 9
- 9aD. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, J. Electrochem. Soc. 2009, 156, A 694–A702;
- 9bS. Zhang, K. Ueno, K. Dokko, M. Watanabe, Adv. Energy Mater. 2015, 5, 1500117;
- 9cX. Li, A. Lushington, Q. Sun, W. Xiao, J. Liu, Nano Lett. 2016, 16, 3545–3549.
- 10
- 10aJ. Gao, M. A. Lowe, Y. Kiya, H. D. Abruna, J. Phys. Chem. C 2011, 115, 25132–25137;
- 10bT. Yim, M. Parka, J. Yu, K. Kim, K. Im, J. Kim, et al., Electrochim. Acta 2013, 107, 454–460.
- 11
- 11aJ. Wang, J. Yang, J. Xie, N. Xu, Adv. Mater. 2002, 14, 963–965;
- 11bJ. Wang, J. Yang, C. Wang, K. Du, J. Xie, N. Xu, Adv. Funct. Mater. 2003, 13, 487–492;
- 11cS. Xin, L. Gu, N. Zhao, Y. Yin, L. Zhou, Y. Guo, L. Wan, J. Am. Chem. Soc. 2012, 134, 18510–18513.
- 12R. Miao, J. Yang, X. Feng, H. Jia, J. Wang, Y. Nuli, J. Power Sources 2014, 271, 291–297.
- 13
- 13aS. Zhang, ECS Trans. 2007, 3, 59–68;
- 13bZ. Chen, Y. Qin, J. Liu, K. Amine, Electrochem. Solid-State Lett. 2009, 12, A 69–A72;
- 13cJ. Li, K. Xie, Y. Lai, Z. Zhang, F. Li, X. Hao, X. Chen, Y. Liu, J. Power Sources 2010, 195, 5344–5350;
- 13dZ. Zhang, X. Chen, F. Li, Y. Lai, J. Li, P. Liu, X. Wang, J. Power Sources 2010, 195, 7397–7402;
- 13eF. Wu, J. Qian, R. Chen, J. Lu, L. Li, H. Wu, J. Chen, T. Zhao, Y. Ye, K. Amine, ACS Appl. Mater. Interfaces 2014, 6, 15542–15549.
- 14P. C. Howlett, D. R. MacFarlane, A. F. Hollenkamp, Electrochem. Solid-State Lett. 2004, 7, A 97–A101.
- 15B. Philippe, R. Dedryvere, M. Gorgoi, H. Rensmo, D. Gonbeau, K. Edstrom, J. Am. Chem. Soc. 2013, 135, 9829–9842.
- 16Q. C. Liu, J. Xu, S. Yuan, Z. Chang, D. Xu, X. Zhan, Adv. Mater. 2015, 27, 5241–5247.
- 17D. Aurbach, J. Power Sources 2000, 89, 206–218.
- 18L. Wang, X. He, J. Li, M. Chen, J. Gao, C. Jiang, Electrochim. Acta 2012, 72, 114–119.
- 19S. S. Zhang, Electrochem. Commun. 2006, 8, 1423–1428.
- 20J. Wang, Z. Yao, C. W. Monroe, J. Yang, Y. Nuli, Adv. Funct. Mater. 2013, 23, 1194–1201.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.