Total Synthesis of Calophyline A
Dr. Guang Li
School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoni Xie
School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Liansuo Zu
School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
Search for more papers by this authorDr. Guang Li
School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoni Xie
School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Liansuo Zu
School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 China
Search for more papers by this authorAbstract
Reported herein is the total synthesis of calophyline A, an indoline natural product possessing distinct ring connectivity which has not been synthesized previously. The synthetic route features several key transformations, including an aza-pinacol rearrangement to construct the nitrogen-containing bridged [3.2.2] bicycle, a Heck cyclization to assemble the fused 6/5/6/5 ring system, and a challenging late-stage aldol reaction to generate both a neopentyl quaternary stereogenic center and an oxygen-containing bridged [3.2.1] bicycle.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604770-sup-0001-misc_information.pdf2.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected accounts, highlights, and reviews of akuammiline alkaloids, see:
- 1aA. Ramirez, S. Garcia-Rubio, Curr. Med. Chem. 2003, 10, 1891–1915;
- 1bD. Zhang, H. Song, Y. Qin, Acc. Chem. Res. 2011, 44, 447–457;
- 1cR. Eckermann, T. Gaich, Synthesis 2013, 45, 2813–2823;
- 1dE. Doris, Angew. Chem. Int. Ed. 2014, 53, 4041–4042; Angew. Chem. 2014, 126, 4121–4122;
- 1eJ. M. Smith, J. Moreno, B. W. Boal, N. K. Garg, Angew. Chem. Int. Ed. 2015, 54, 400–412; Angew. Chem. 2015, 127, 410–422;
- 1fW. Zi, Z. Zuo, D. Ma, Acc. Chem. Res. 2015, 48, 702–711.
- 2For total synthesis of vincorine, see:
- 2aM. Zhang, X. Huang, L. Shen, Y. Qin, J. Am. Chem. Soc. 2009, 131, 6013–6020;
- 2bW. Zi, W. Xie, D. Ma, J. Am. Chem. Soc. 2012, 134, 9126–9129;
- 2cB. D. Horning, D. W. C. MacMillan, J. Am. Chem. Soc. 2013, 135, 6442–6445.
- 3For total synthesis of aspidophylline A, see:
- 3aL. Zu, B. W. Boal, N. K. Garg, J. Am. Chem. Soc. 2011, 133, 8877–8879;
- 3bM. Teng, W. Zi, D. Ma, Angew. Chem. Int. Ed. 2014, 53, 1814–1817; Angew. Chem. 2014, 126, 1845–1848;
- 3cW. Ren, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2014, 53, 1818–1821; Angew. Chem. 2014, 126, 1849–1852;
- 3dS. Jiang, X. Zeng, X. Liang, T. Lei, K. Wei, Y. Yang, Angew. Chem. Int. Ed. 2016, 55, 4044–4048; Angew. Chem. 2016, 128, 4112–4116.
- 4For total synthesis of scholarisine A, see:
- 4aG. L. Adams, P. J. Carroll, A. B. Smith III, J. Am. Chem. Soc. 2012, 134, 4037–4040;
- 4bG. L. Adams, P. J. Carroll, A. B. Smith III, J. Am. Chem. Soc. 2013, 135, 519–528;
- 4cM. W. Smith, S. A. Snyder, J. Am. Chem. Soc. 2013, 135, 12964–12967.
- 5For total synthesis of picrinine, see:
- 5aJ. M. Smith, J. Moreno, B. W. Boal, N. K. Garg, J. Am. Chem. Soc. 2014, 136, 4504–4507;
- 5bJ. M. Smith, J. Moreno, B. W. Boal, N. K. Garg, J. Org. Chem. 2015, 80, 8954–8967.
- 6For total syntheses of 2-(S)-cathafoline and strictamine, see:
- 6aJ. Moreno, E. Picazo, L. A. Morrill, J. M. Smith, N. K. Garg, J. Am. Chem. Soc. 2016, 138, 1162–1165;
- 6bW. Ren, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2016, 55, 3500–3503; Angew. Chem. 2016, 128, 3561–3564.
- 7Y. Li, S. Zhu, A. Li, J. Am. Chem. Soc. 2016, 138, 3982–3985.
- 8L. Li, T. Yang, Y. Liu, J. Liu, M. Li, Y. Wang, S. Yang, Q. Zou, G. Li, Org. Lett. 2012, 14, 3450–3453.
- 9B. M. Hudson, J. G. Harrison, D. J. Tantillo, Tetrahedron Lett. 2013, 54, 2952–2955.
- 10
- 10aY. Yu, G. Li, L. Jiang, L. Zu, Angew. Chem. Int. Ed. 2015, 54, 12627–12631; Angew. Chem. 2015, 127, 12818–12822;
- 10bY. Yu, G. Li, L. Zu, Synlett 2016, 27, 1303–1309.
- 11For recent examples in total synthesis, see:
- 11aA. B. Dounay, P. G. Humphreys, L. E. Overman, A. D. Wrobleski, J. Am. Chem. Soc. 2008, 130, 5368–5377;
- 11bZ. Bian, C. C. Marvin, S. F. Martin, J. Am. Chem. Soc. 2013, 135, 10886–10889;
- 11cI. T. Chen, I. Baitinger, L. Schreyer, D. Trauner, Org. Lett. 2014, 16, 166–169;
- 11dS. He, W. Yang, L. Zhu, G. Du, C. Lee, Org. Lett. 2014, 16, 496–499.
- 12
- 12aE. C. Taylor, Y. Shvo, J. Org. Chem. 1968, 33, 1719–1727;
- 12bS. J. DeSolms, J. Org. Chem. 1976, 41, 2650–2651;
- 12cJ. T. S. Yeoman, V. W. Mak, S. E. Reisman, J. Am. Chem. Soc. 2013, 135, 11764–11767.
- 13For reviews of the Heck reaction, see:
- 13aC. Amatore, A. J. Jutand, Organomet. Chem. 1999, 576, 254–278;
- 13bI. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009–3066;
- 13cA. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103, 2945–2963.
- 14For the use of the Heck reaction in the synthesis of Strychnos alkaloids, see:
- 14aV. H. Rawal, C. Michoud, R. F. Monestel, J. Am. Chem. Soc. 1993, 115, 3030–3031;
- 14bV. H. Rawal, S. J. Iwasa, Org. Chem. 1994, 59, 2685–2686;
- 14cD. B. C. Martin, C. D. Vanderwal, J. Am. Chem. Soc. 2009, 131, 3472–3473;
- 14dS. B. Jones, B. Simmons, A. Mastracchio, D. W. C. MacMillan, Nature 2011, 475, 183–188.
- 15
- 15aJ. Yu, X. Z. Wearing, J. M. Cook, J. Org. Chem. 2005, 70, 3963–3979;
- 15bW. Yin, J. Ma, F. M. Rivas, J. M. Cook, Org. Lett. 2007, 9, 295–298.
- 16R. Schwesinger, Chimia 1985, 39, 269.
- 17The NH was also reacted with formaldehyde by 1,2-addition, thus forming an unstable hemiaminal, which was converted into 15 upon silica gel chromatography. See the Supporting Information.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.