Two-Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties
Yalong Jiao
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001 Australia
These authors contributed equally to this work.
Search for more papers by this authorFengxian Ma
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001 Australia
These authors contributed equally to this work.
Search for more papers by this authorProf. John Bell
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001 Australia
Search for more papers by this authorCorresponding Author
Prof. Aijun Du
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001 Australia
Search for more papers by this authorYalong Jiao
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001 Australia
These authors contributed equally to this work.
Search for more papers by this authorFengxian Ma
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001 Australia
These authors contributed equally to this work.
Search for more papers by this authorProf. John Bell
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001 Australia
Search for more papers by this authorCorresponding Author
Prof. Aijun Du
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001 Australia
Search for more papers by this authorAbstract
Two-dimensional (2D) boron sheets have been successfully synthesized in recent experiments, however, some important issues remain, including the dynamical instability, high energy, and the active surface of the sheets. In an attempt to stabilize 2D boron layers, we have used density functional theory and global minimum search with the particle-swarm optimization method to predict four stable 2D boron hydride layers, namely the C2/m, Pbcm, Cmmm, and Pmmn sheets. The vibrational normal mode calculations reveal all these structures are dynamically stable, indicating potential for successful experimental synthesis. The calculated Young's modulus indicates a high mechanical strength for the C2/m and Pbcm phases. Most importantly, the C2/m, Pbcm, and Pmmn structures exhibit Dirac cones with massless Dirac fermions and the Fermi velocities for the Pbcm and Cmmm structures are even higher than that of graphene. The Cmmm phase is reported as the first discovery of Dirac ring material among boron-based 2D structures. The unique electronic structure of the 2D boron hydride sheets makes them ideal for nanoelectronics applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604369-sup-0001-misc_information.pdf2.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, V. L. Solozhenko, Nature 2009, 457, 863–867;
- 1bF. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Nano Lett. 2016, 16, 3022–3028.
- 2
- 2aT. R. Galeev, C. Romanescu, W.-L. Li, L.-S. Wang, A. I. Boldyrev, Angew. Chem. Int. Ed. 2012, 51, 2101–2105; Angew. Chem. 2012, 124, 2143–2147;
- 2bW. Huang, A. P. Sergeeva, H.-J. Zhai, B. B. Averkiev, L.-S. Wang, A. I. Boldyrev, Nat. Chem. 2010, 2, 202–206;
- 2cL.-M. Yang, E. Ganz, Z. Chen, Z.-X. Wang, P. v. R. Schleyer, Angew. Chem. Int. Ed. 2015, 54, 9468–9501; Angew. Chem. 2015, 127, 9602–9637.
- 3V. Bezugly, J. Kunstmann, B. Grundkötter-Stock, T. Frauenheim, T. Niehaus, G. Cuniberti, ACS Nano 2011, 5, 4997–5005.
- 4
- 4aA. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, N. P. Guisinger, Science 2015, 350, 1513–1516;
- 4bZ. Zhang, Y. Yang, G. Gao, B. I. Yakobson, Angew. Chem. Int. Ed. 2015, 54, 13022–13026; Angew. Chem. 2015, 127, 13214–13218;
- 4cX. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X. C. Zeng, ACS Nano 2012, 6, 7443–7453;
- 4dG. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You, Q. Wang, Angew. Chem. Int. Ed. 2015, 54, 15473–15477; Angew. Chem. 2015, 127, 15693–15697;
- 4eR. D. Dewhurst, R. Claessen, H. Braunschweig, Angew. Chem. Int. Ed. 2016, 55, 4866–4868; Angew. Chem. 2016, 128, 4948–4950;
- 4fE. S. Penev, A. Kutana, B. I. Yakobson, Nano Lett. 2016, 16, 2522–2526;
- 4gH. Zhang, Y. Li, J. Hou, K. Tu, Z. Chen, J. Am. Chem. Soc. 2016;
- 4hL. Xu, A. Du, L. Kou, arXiv preprint arXiv:1602.03620 2016;
- 4iZ. Zhang, E. S. Penev, B. I. Yakobson, Nat. Chem. 2016, 8, 525–527.
- 5B. F. Decker, J. S. Kasper, Acta Crystallogr. 1959, 12, 503–506.
- 6Z. A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Nat. Commun. 2014, 5, 3113.
- 7X.-F. Zhou, X. Dong, A. R. Oganov, Q. Zhu, Y. Tian, H.-T. Wang, Phys. Rev. Lett. 2014, 112, 085502.
- 8B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Nat. Chem. 2016, 8, 563–568.
- 9Y. Liu, E. S. Penev, B. I. Yakobson, Angew. Chem. Int. Ed. 2013, 52, 3156–3159; Angew. Chem. 2013, 125, 3238–3241.
- 10F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Nano Lett. 2016.
- 11W. N. Lipscomb, Boron hydrides, Courier Corporation, 2012.
- 12W.-L. Li, C. Romanescu, T. Jian, L.-S. Wang, J. Am. Chem. Soc. 2012, 134, 13228–13231.
- 13C.-H. Hu, A. R. Oganov, Q. Zhu, G.-R. Qian, G. Frapper, A. O. Lyakhov, H.-Y. Zhou, Phys. Rev. Lett. 2013, 110, 165504.
- 14
- 14aB. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, M. Soljacic, Nature 2015, 525, 354–358;
- 14bC. H. Lee, X. Zhang, B. Guan, Sci. Rep. 2015, 5, 18008.
- 15I. Boustani, Phys. Rev. B 1997, 55, 16426–16438.
- 16T. A. Abtew, B.-c. Shih, P. Dev, V. H. Crespi, P. Zhang, Phys. Rev. B 2011, 83, 094108.
- 17
- 17aA. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, H. G. von Schnering, Angew. Chem. Int. Ed. Engl. 1992, 31, 187–188; Angew. Chem. 1992, 104, 186–188;
- 17bB. Silvi, A. Savin, Nature 1994, 371, 683–686;
- 17cA. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397–5403.
- 18M. Pumera, C. H. A. Wong, Chem. Soc. Rev. 2013, 42, 5987–5995.
- 19Y. Wang, X. Xu, J. Lu, M. Lin, Q. Bao, B. Özyilmaz, K. P. Loh, ACS Nano 2010, 4, 6146–6152.
- 20A. Ciesielski, P. Samori, Adv. Mater. 2016, DOI: 10.1002/adma.201505371.
- 21A. N. Kolmogorov, S. Hajinazar, C. Angyal, V. L. Kuznetsov, A. P. Jephcoat, Phys. Rev. B 2015, 92, 144110.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.