Unraveling the Catalytic Synergy between Ti3+ and Al3+ Sites on a Chlorinated Al2O3: A Tandem Approach to Branched Polyethylene
Alessandro Piovano
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorDr. K. S. Thushara
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorDr. Elena Morra
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorProf. Mario Chiesa
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorCorresponding Author
Dr. Elena Groppo
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorAlessandro Piovano
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorDr. K. S. Thushara
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorDr. Elena Morra
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorProf. Mario Chiesa
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorCorresponding Author
Dr. Elena Groppo
Department of Chemistry—INSTM and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy
Search for more papers by this authorAbstract
An original step-by-step approach to synthesize and characterize a bifunctional heterogeneous catalyst consisting of isolated Ti3+ centers and strong Lewis acid Al3+ sites on the surface of a chlorinated alumina has been devised. A wide range of physicochemical and spectroscopic techniques were employed to demonstrate that the two sites, in close proximity, act in a concerted fashion to synergistically boost the conversion of ethylene into branched polyethylene, using ethylene as the only feed and without any activator. The coordinatively unsaturated Al3+ ions promote ethylene oligomerization through a carbocationic mechanism and activate the Ti3+ sites for the traditional ethylene coordination polymerization.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604136-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. J. A. Komon, G. C. Bazan, Macromol. Rapid Commun. 2001, 22, 467.
- 2M. Frediani, C. Fiel, W. Kaminsky, C. Bianchini, L. Rosi, Macromol. Symp. 2006, 236, 124.
- 3T. L. Lohr, T. J. Marks, Nat. Chem. 2015, 7, 477.
- 4M. J. Climent, A. Corma, S. Iborra, M. J. Sabater, ACS Catal. 2014, 4, 870.
- 5R. W. Barnhart, G. C. Bazan, T. Mourey, J. Am. Chem. Soc. 1998, 120, 1082.
- 6M. Frediani, C. Bianchini, W. Kaminsky, Kinet. Catal. 2006, 47, 207.
- 7D. Cicmil, J. Meeuwissen, A. Vantomme, J. Wang, I. K. Van Ravenhorst, H. E. Van Der Bij, A. Muñoz-Murillo, B. M. Weckhuysen, Angew. Chem. Int. Ed. 2015, 54, 13073; Angew. Chem. 2015, 127, 13265.
- 8C. Robert, C. M. Thomas, Chem. Soc. Rev. 2013, 42, 9392.
- 9H. Li, T. J. Marks, Proc. Natl. Acad. Sci. USA 2006, 103, 15295.
- 10M. Delferro, T. J. Marks, Chem. Rev. 2011, 111, 2450.
- 11T. Vestberg, P. Denifl, M. Parkinson, C. E. Wilén, J. Polym. Sci. Part A 2010, 48, 351.
- 12M. P. McDaniel, Adv. Catal. 2010, 53, 123.
- 13C. Barzan, D. Gianolio, E. Groppo, C. Lamberti, V. Monteil, E. A. Quadrelli, S. Bordiga, Chem. Eur. J. 2013, 19, 17277.
- 14C. L. Thomas, US 3255167 A, 1966.
- 15J. Inomata, K. Iwasaki, G. Kakogawa, S. Kamimura, R. Matsuura, K. Yamaguchi, US 3506633 A, 1970.
- 16E. Groppo, K. Seenivasan, C. Barzan, Catal. Sci. Technol. 2013, 3, 858.
- 17J. B. Kinney, R. H. Staley, J. Phys. Chem. 1983, 87, 3735.
- 18S. Haukka, E. L. Lakomaa, O. Jylha, J. Vilhunen, S. Hornytzkyj, Langmuir 1993, 9, 3497.
- 19S. Haukka, E. L. Lakomaa, A. Root, J. Phys. Chem. 1993, 97, 5085.
- 20A. Kytokivi, S. Haukka, J. Phys. Chem. B 1997, 101, 10365.
- 21K. Seenivasan, E. Gallo, A. Piovano, J. G. Vitillo, A. Sommazzi, S. Bordiga, C. Lamberti, P. Glatzel, E. Groppo, Dalton Trans. 2013, 42, 12706.
- 22A. R. McInroy, D. T. Lundie, J. M. Winfield, C. C. Dudman, P. Jones, S. F. Parker, D. Lennon, Catal. Today 2006, 114, 403.
- 23K. Seenivasan, A. Sommazzi, F. Bonino, S. Bordiga, E. Groppo, Chem. Eur. J. 2011, 17, 8648.
- 24C. K. Jorgensen, in Orbitals in Atoms and Molecules, Academic Press, London and New York, 1962, pp. 80.
- 25C. K. Jorgensen, Prog. Inorg. Chem. 1970, 12, 101.
10.1002/9780470166130.ch2 Google Scholar
- 26E. Morra, E. Giamello, S. Van Doorslaer, G. Antinucci, M. D′Amore, V. Busico, M. Chiesa, Angew. Chem. Int. Ed. 2015, 54, 4857; Angew. Chem. 2015, 127, 4939.
- 27A. Krzywicki, M. Marczewski, J. Chem. Soc. Faraday Trans. 1 1980, 76, 1311.
- 28A. Kytökivi, M. Lindblad, A. Root, J. Chem. Soc. Faraday Trans. 1995, 91, 941.
- 29A. Khaleel, B. Dellinger, Environ. Sci. Technol. 2002, 36, 1620.
- 30A. Corma, H. Garcia, Chem. Rev. 2003, 103, 4307.
- 31T. Tsujino, A. Kaiya, N. Kuroda, M. Takahashi, J. Macromol. Sci. Chem. A 1971, 5, 311.
- 32A. Pöppl, L. Kevan, J. Phys. Chem. 1996, 100, 3387.
- 33S. Maurelli, G. Berlier, M. Chiesa, F. Musso, F. Corà, J. Phys. Chem. C 2014, 118, 19879.
- 34M. Bjørgen, K. P. Lillerud, U. Olsbye, S. Bordiga, A. Zecchina, J. Phys. Chem. B 2004, 108, 7862.
- 35C. T. O'Connor, M. Kojima, Catal. Today 1990, 6, 329.
- 36S. Aoshima, S. Kanaoka, Chem. Rev. 2009, 109, 5245.
- 37J. H. Lunsford, L. W. Zingery, M. P. Rosynek, J. Catal. 1975, 38, 179.
- 38A. Ayame, G. Sawada, Bull. Chem. Soc. Jpn. 1989, 62, 3055.
- 39F. J. Chen, H. Cheradame, J. E. Stanat, G. Rissoan, US 5874380 A, 1999.
- 40M. C. Baird, Chem. Rev. 2000, 100, 1471.
- 41G. A. Olah, J. Org. Chem. 2001, 66, 5943.
- 42A. Ayame, G. Sawada, H. Sato, G. Zhang, T. Ohta, T. Izumizawa, Appl. Catal. 1989, 48, 25.
- 43E. Groppo, C. Lamberti, G. Spoto, S. Bordiga, G. Magnacca, A. Zecchina, J. Catal. 2005, 236, 233.
- 44E. Groppo, K. Seenivasan, E. Gallo, A. Sommazzi, C. Lamberti, S. Bordiga, ACS Catal. 2015, 5, 5586.
- 45P. Cossee, J. Catal. 1964, 3, 80.
- 46It is worth noticing that analogous systems where TiClx species are grafted on non-acidic supports are not active in ethylene polymerization when just reduced by H2 at similar temperature conditions.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.