Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2
Dr. Kai-Jie Chen
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorDr. David G. Madden
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorDr. Tony Pham
Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL, 33620-5250 USA
Search for more papers by this authorKatherine A. Forrest
Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL, 33620-5250 USA
Search for more papers by this authorAmrit Kumar
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorDr. Qing-Yuan Yang
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorDr. Wei Xue
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorProf. Dr. Brian Space
Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL, 33620-5250 USA
Search for more papers by this authorDr. John J. Perry IV
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorCorresponding Author
Prof. Dr. Jie-Peng Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorProf. Dr. Xiao-Ming Chen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Michael J. Zaworotko
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorDr. Kai-Jie Chen
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorDr. David G. Madden
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorDr. Tony Pham
Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL, 33620-5250 USA
Search for more papers by this authorKatherine A. Forrest
Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL, 33620-5250 USA
Search for more papers by this authorAmrit Kumar
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorDr. Qing-Yuan Yang
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorDr. Wei Xue
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorProf. Dr. Brian Space
Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL, 33620-5250 USA
Search for more papers by this authorDr. John J. Perry IV
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorCorresponding Author
Prof. Dr. Jie-Peng Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorProf. Dr. Xiao-Ming Chen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Michael J. Zaworotko
Department of Chemical & Environmental Sciences, Bernal Institute, University of Limerick, Plassey House, Limerick, Republic of Ireland
Search for more papers by this authorAbstract
Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN≈40 000) and CH4 (SCM≈3300). Qc-5-Cu-sql-β, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2. Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-β is stable to moisture and its separation performance is unaffected by humidity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201603934-sup-0001-misc_information.pdf6.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Monastersky, Nature 2013, 497, 13–14.
- 2
- 2aM. Tagliabue, D. Farrusseng, S. Valencia, S. Aguado, U. Ravon, C. Rizzo, A. Corma, C. Mirodatos, Chem. Eng. J. 2009, 155, 553–566;
- 2bS. Cavenati, C. A. Grande, A. E. Rodrigues, J. Chem. Eng. Data 2004, 49, 1095–1101.
- 3J. J. Perry IV, J. A. Perman, M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400–1417.
- 4
- 4aS. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430;
- 4bS. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application, RSC, Cambridge, 2009.
- 5
- 5aD. Farrusseng, Metal-Organic Frameworks: Applications from Catalysis to Gas Storage, Wiley-VCH, Weinheim, 2011;
- 5bL. R. MacGillivray, Metal-Organic Frameworks: Design and Applications, Wiley, Hoboken, 2010.
10.1002/9780470606858 Google Scholar
- 6B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629–1658.
- 7
- 7aM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science 2002, 295, 469–472;
- 7bO. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714.
- 8
- 8aP. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Q. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80–84;
- 8bO. Shekhah, Y. Belmabkhout, Z. J. Chen, V. Guillerm, A. Cairns, K. Adil, M. Eddaoudi, Nat. Commun. 2014, 5, 4228;
- 8cM. H. Mohamed, S. K. Elsaidi, L. Wojtas, T. Pham, K. A. Forrest, B. Tudor, B. Space, M. J. Zaworotko, J. Am. Chem. Soc. 2012, 134, 19556–19559.
- 9B. L. Chen, S. Q. Ma, E. J. Hurtado, E. B. Lobkovsky, H.-C. Zhou, Inorg. Chem. 2007, 46, 8490–8492.
- 10
- 10aD. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, K. Kim, J. Am. Chem. Soc. 2004, 126, 32–33;
- 10bJ. W. Yoon, S. H. Jhung, Y. K. Hwang, S. M. Humphrey, P. T. Wood, J.-S. Chang, Adv. Mater. 2007, 19, 1830–1834;
- 10cM. Dincă, J. R. Long, J. Am. Chem. Soc. 2005, 127, 9376–9377;
- 10dY. Peng, Y.-S. Li, Y.-J. Ban, H. Jin, W.-M. Jiao, X.-L. Liu, W.-S. Yang, Science 2014, 346, 1356–1359;
- 10eX.-C. Huang, J.-P. Zhang, X.-M. Chen, Chin. Sci. Bull. 2003, 48, 1531–1534;
- 10fK. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R.-D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.
- 11Z.-J. Zhang, Z.-Z. Yao, S. C. Xiang, B. L. Chen, Energy Environ. Sci. 2014, 7, 2868–2899.
- 12
- 12aA. Anson, C. C. H. Lin, S. M. Kuznicki, J. A. Sawada, Chem. Eng. Sci. 2009, 64, 3683–3687;
- 12bK. Morishige, J. Phys. Chem. C 2011, 115, 9713–9718;
- 12cL. T. Du, Z. Y. Lu, K. Y. Zheng, J. Y. Wang, X. Zheng, Y. Pan, X. Z. You, J. F. Bai, J. Am. Chem. Soc. 2013, 135, 562–565;
- 12dL. Hou, W. J. Shi, Y. Y. Wang, Y. Guo, C. Jin, Q. Z. Shi, Chem. Commun. 2011, 47, 5464–5466;
- 12eW. M. Bloch, R. Babarao, M. R. Hill, C. J. Doonan, C. J. Sumby, J. Am. Chem. Soc. 2013, 135, 10441–10448.
- 13J.-P. Zhang, X.-C. Huang, X.-M. Chen, Chem. Soc. Rev. 2009, 38, 2385–2396.
- 14A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.
- 15A. L. Myers, J. M. Prausnitz, AIChE J. 1965, 11, 121–127.
- 16
- 16aK. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781;
- 16bJ.-R. Li, Y. G. Ma, M. C. McCarthy, J. L. Sculley, J. M. Yu, H.-K. Jeong, P. B. Balbuena, H.-C. Zhou, Coord. Chem. Rev. 2011, 255, 1791–1823;
- 16cJ.-B. Lin, W. Xue, J.-P. Zhang, X.-M. Chen, Chem. Commun. 2011, 47, 926–928. See also Table S3 and references therein.
- 17Q.-M. Wang, D. Shen, M. Bülow, M. Ling Lau, S. Deng, F. R. Fitch, N. O. Lemcoff, J. Semanscin, Microporous Mesoporous Mater. 2002, 55, 217–230.
- 18J. An, N. L. Rosi, J. Am. Chem. Soc. 2010, 132, 5578–5579.
- 19J. Kim, S.-T. Yang, S. B. Choi, J. Sim, J. Kim, W.-S. Ahn, J. Mater. Chem. 2011, 21, 3070–3076.
- 20
- 20aA. Kumar, D. G. Madden, M. Lusi, K.-J. Chen, E. A. Daniels, T. Curtin, J. J. Perry IV, M. J. Zaworotko, Angew. Chem. Int. Ed. 2015, 54, 14372–14377; Angew. Chem. 2015, 127, 14580–14585;
- 20bH.-B. Kim, Handbook of Stability Testing in Pharmaceutical Development: Regulations, Methodologies, and Best Practices, Springer, New York, 2009.
- 21
- 21aJ. Canivet, A. Fateeva, Y. M. Guo, B. Coasne, D. Farrusseng, Chem. Soc. Rev. 2014, 43, 5594–5617;
- 21bN. C. Burtch, H. Jasuja, K. S. Walton, Chem. Rev. 2014, 114, 10575–10612.
- 22
- 22aS. Keskin, T. M. van Heest, D. S. Sholl, ChemSusChem 2010, 3, 879–891;
- 22bT. C. Drage, C. E. Snape, L. A. Stevens, J. Wood, J. W. Wang, A. I. Cooper, R. Dawson, X. Guo, C. Satterley, R. Irons, J. Mater. Chem. 2012, 22, 2815–2823;
- 22cJ. A. Mason, T. M. McDonald, T.-H. Bae, J.-E. Bachman, K. Sumida, J. J. Dutton, S. S. Kaye, J. R. Long, J. Am. Chem. Soc. 2015, 137, 4787–4803.
- 23Single-crystal data (CCDC numbers: 1470735, 1470736, 1470737, 1470738, 1470739, and 1470740) for this article can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.