Stabilität von Perowskit-Solarzellen: Einfluss der Substitution von A-Kation und X-Anion
Ze Wang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorZejiao Shi
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorTaotao Li
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorCorresponding Author
Prof. Yonghua Chen
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorZe Wang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorZejiao Shi
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorTaotao Li
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorCorresponding Author
Prof. Yonghua Chen
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816 Volksrepublik China
Search for more papers by this authorAbstract
Seit einigen Jahren entwickeln sich Metall-organische Trihalogenidperowskite zu aussichtsreichen Materialien für kostengünstige, flexible und hocheffiziente Solarzellen. Vor einer möglichen gewerblichen Nutzung müssen aber für die organisch-anorganischen Hybrid-Perowskitmaterialien trotz ihrer Verarbeitungsvorteile die Probleme einer schlechten Stabilität gegen Feuchtigkeit, Wärme, Licht und Sauerstoff gelöst werden. Hier besprechen wir den aktuellen Stand der Forschung und behandeln aktuelle Fortschritte zum Verbessern der chemischen Stabilität von Perowskit-Materialien durch Substitution von A-Kation und X-Anion. Dabei soll der Weg zu einem rationalen Design von Perowskit-Materialien geebnet werden, mit denen Perowskit-Solarzellen mit besserer Stabilität erhalten werden können.
References
- 1W. G. Pfann, W. Van Roosbroeck, J. Appl. Phys. 1954, 25, 1422–1434.
- 2J. Yan, B. R. Saunders, RSC Adv. 2014, 4, 43286–43314.
- 3W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234–1237.
- 4http://www.nrel.gov/ncpv/images/efficiency_chart.jpg 2016.
- 5
- 5aM. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643–647;
- 5bJ. S. Manser, M. I. Saidaminov, J. A. Christians, O. M. Bakr, P. V. Kamat, Acc. Chem. Res. 2016, 49, 330–338;
- 5cZ. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi, J. Huang, Mater. Sci. Eng. R 2016, 101, 1–38;
- 5dM. Saba, F. Quochi, A. Mura, G. Bongiovanni, Acc. Chem. Res. 2016, 49, 166–173;
- 5eM. B. Johnston, L. M. Herz, Acc. Chem. Res. 2016, 49, 146–154;
- 5fL. Meng, J. You, T.-F. Guo, Y. Yang, Acc. Chem. Res. 2016, 49, 155–165;
- 5gC. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding, Adv. Sci. 2016, DOI: 10.1002/advs.201500324;
- 5hS. D. Stranks, P. K. Nayak, W. Zhang, T. Stergiopoulos, H. J. Snaith, Angew. Chem. Int. Ed. 2015, 54, 3240–3248; Angew. Chem. 2015, 127, 3288–3297;
- 5iC. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 2015, 48, 2791–2802;
- 5jB. V. Lotsch, Angew. Chem. Int. Ed. 2014, 53, 635–637; Angew. Chem. 2014, 126, 647–649;
- 5kT. C. Sum, N. Mathews, Energy Environ. Sci. 2014, 7, 2518–2534;
- 5lP. Gao, M. Grätzel, M. K. Nazeeruddin, Energy Environ. Sci. 2014, 7, 2448–2463;
- 5mS. Kazim, M. K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 2014, 53, 2812–2824; Angew. Chem. 2014, 126, 2854–2867.
- 6M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506–514.
- 7Z. Cheng, J. Lin, CrystEngComm 2010, 12, 2646–2662.
- 8A. Poglitsch, D. Weber, J. Chem. Phys. 1987, 87, 6373–6378.
- 9C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019–9038.
- 10P. P. Boix, K. Nonomura, N. Mathews, S. G. Mhaisalkar, Mater. Today 2014, 17, 16–23.
- 11J. H. Heo, D. H. Song, B. R. Patil, S. H. Im, Isr. J. Chem. 2015, 55, 966–977.
- 12A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 13C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584–1589.
- 14V. D′Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, Nat. Commun. 2014, 5, 3586.
- 15G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Graetzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344–347.
- 16S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341–344.
- 17S. Chen, K. R. Choudhury, J. Subbiah, C. M. Amb, J. R. Reynolds, F. So, Adv. Energy Mater. 2011, 1, 963–969.
- 18P. Docampo, T. Bein, Acc. Chem. Res. 2016, 49, 339–346.
- 19Y. Rong, L. Liu, A. Mei, X. Li, H. Han, Adv. Energy Mater. 2015, 5, 1501066.
- 20T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza, H. J. Snaith, Adv. Energy Mater. 2015, 5, 1500963.
- 21T. A. Berhe, W. Su, C. Chen, C. Pan, J. Cheng, H. Chen, M. Tsai, L. Chen, A. A. Dubale, B. Hwang, Energy Environ. Sci. 2016, 9, 323–356.
- 22M. Ye, X. Hong, F. Zhang, X. Liu, J. Mater. Chem. A 2016, 4, 6755–6771.
- 23H. T. Nguyen, Z. Ku, H. J. Fan, Adv. Energy Mater. 2016, 6, 1501420.
- 24A. B. Djurisic, F. Liu, A. M. C. Ng, Q. Dong, M. K. Wong, A. Ng, C. Surya, Phys. Status Solidi RRL 2016, 10, 281–299.
- 25B. Li, Y. Li, C. Zheng, D. Gao, W. Huang, RSC Adv. 2016, 6, 38079–38091.
- 26J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764–1769.
- 27G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, J. Mater. Chem. A 2014, 2, 705–710.
- 28C. Clegg, I. G. Hill, RSC Adv. 2016, 6, 5244852458.
- 29S. Ahmad, P. K. Kanaujia, W. Niu, J. J. Baumberg, G. V. Prakash, ACS Appl. Mater. Interfaces 2014, 6, 10238–10247.
- 30J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14, 2584–2590.
- 31B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D′Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, H. Boyen, Adv. Energy Mater. 2015, 5, 1500477.
- 32Y. Dkhissi, S. Meyer, D. Chen, H. C. Weerasinghe, L. Spiccia, Y. Cheng, R. A. Caruso, ChemSusChem 2016, 9, 687–695.
- 33J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Graetzel, S. I. Seok, Nat. Photonics 2013, 7, 486–491.
- 34G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, C. Ducati, Nat. Energy 2016, 1, 15012.
- 35D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant, S. A. Haque, Energy Environ. Sci. 2016, 9, 1655–1660.
- 36H. Yuan, E. Debroye, K. Janssen, H. Naiki, C. Steuwe, G. Lu, M. Moris, E. Orgiu, H. Uji-i, F. De Schryver, P. Samori, J. Hofkens, M. Roeffaers, J. Phys. Chem. Lett. 2016, 7, 561–566.
- 37T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith, Nat. Commun. 2013, 4, 2885.
- 38S. Ito, S. Tanaka, K. Manabe, H. Nishino, J. Phys. Chem. C 2014, 118, 16995–17000.
- 39D. Wei, T. Wang, J. Ji, M. Li, P. Cui, Y. Li, G. Li, J. M. Mbengue, D. Song, J. Mater. Chem. A 2016, 4, 1991–1998.
- 40N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S. A. Haque, Angew. Chem. Int. Ed. 2015, 54, 8208–8212; Angew. Chem. 2015, 127, 8326–8330.
- 41A. J. Pearson, G. E. Eperon, P. E. Hopkinson, S. N. Habisreutinger, J. T. Wang, H. J. Snaith, N. C. Greenham, Adv. Energy Mater. 2016, DOI: 10.1002/aenm.201600014.
- 42W. Li, W. Zhang, S. Van Reenen, R. J. Sutton, J. Fan, A. A. Haghighirad, M. B. Johnston, L. Wang, H. J. Snaith, Energy Environ. Sci. 2016, 9, 490–498.
- 43H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang, G. Zhang, Z. Kang, Y. Zhang, Nano Energy 2016, 22, 223–231.
- 44X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, J. Mater. Chem. A 2015, 3, 5360–5367.
- 45S. Guarnera, A. Abate, W. Zhang, J. M. Foster, G. Richardson, A. Petrozza, H. J. Snaith, J. Phys. Chem. Lett. 2015, 6, 432–437.
- 46W. Li, H. Dong, L. Wang, N. Li, X. Guo, J. Li, Y. Qiu, J. Mater. Chem. A 2014, 2, 13587–13592.
- 47Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Adv. Mater. 2016, DOI: 10.1002/adma.201600969.
- 48W. Li, J. Li, G. Niu, L. Wang, J. Mater. Chem. A 2016, DOI: 10.1039/c5ta09165a.
- 49Y. Hou, H. Zhang, W. Chen, S. Chen, C. O. R. Quiroz, H. Azimi, A. Osvet, G. J. Matt, E. Zeira, J. Seuring, N. Kausch-Busies, W. Loevenich, C. J. Brabec, Adv. Energy Mater. 2015, 5, 1500543.
- 50A. Agresti, S. Pescetelli, L. Cina, D. Konios, G. Kakavelakis, E. Kymakis, A. Di Carlo, Adv. Funct. Mater. 2016, 26, 2686–2694.
- 51W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Graetzel, L. Han, Science 2015, 350, 944–948.
- 52J. You, L. Meng, T. Song, T. Guo, Y. M. Yang, W. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotechnol. 2016, 11, 75–81.
- 53S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, H. J. Snaith, Nano Lett. 2014, 14, 5561–5568.
- 54J. Liu, S. Pathak, T. Stergiopoulos, T. Leijtens, K. Wojciechowski, S. Schumann, N. Kausch-Busies, H. J. Snaith, J. Phys. Chem. Lett. 2015, 6, 1666–1673.
- 55Y. S. Kwon, J. Lim, H. Yun, Y. Kim, T. Park, Energy Environ. Sci. 2014, 7, 1454–1460.
- 56J. Liu, Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen, L. Han, Energy Environ. Sci. 2014, 7, 2963–2967.
- 57L. Zheng, Y. Chung, Y. Ma, L. Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, Chem. Commun. 2014, 50, 11196–11199.
- 58H. Li, K. Fu, A. Hagfeldt, M. Graetzel, S. G. Mhaisalkar, A. C. Grimsdale, Angew. Chem. Int. Ed. 2014, 53, 4085–4088; Angew. Chem. 2014, 126, 4169–4172.
- 59J. Xiao, J. Shi, H. Liu, Y. Xu, S. Lv, Y. Luo, D. Li, Q. Meng, Y. Li, Adv. Energy Mater. 2015, 5, 1401943.
- 60H. Choi, S. Park, S. Paek, P. Ekanayake, M. K. Nazeeruddin, J. Ko, J. Mater. Chem. A 2014, 2, 19136–19140.
- 61Y. Ma, Y. Chung, L. Zheng, D. Zhang, X. Yu, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, D. Zou, ACS Appl. Mater. Interfaces 2015, 7, 6406–6411.
- 62J. Min, Z. Zhang, Y. Hou, C. O. R. Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, C. J. Brabec, Chem. Mater. 2015, 27, 227–234.
- 63K. Neumann, M. Thelakkat, RSC Adv. 2014, 4, 43550–43559.
- 64H. Choi, J. W. Cho, M. Kang, J. Ko, Chem. Commun. 2015, 51, 9305–9308.
- 65M. Zhang, M. Lyu, H. Yu, J. Yun, Q. Wang, L. Wang, Chem. Eur. J. 2015, 21, 434–439.
- 66S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, H. J. Snaith, J. Phys. Chem. Lett. 2014, 5, 4207–4212.
- 67J. Zhang, Z. Hu, L. Huang, G. Yue, J. Liu, X. Lu, Z. Hu, M. Shang, L. Han, Y. Zhu, Chem. Commun. 2015, 51, 7047–7050.
- 68J. Cao, J. Yin, S. Yuan, Y. Zhao, J. Li, N. Zheng, Nanoscale 2015, 7, 9443–9447.
- 69Z. Zhu, C. Chueh, F. Lin, A. K. Y. Jen, Adv. Sci. 2016, 3, 1600027.
- 70B. Roose, K. C. Gödel, S. Pathak, A. Sadhanala, J. P. C. Baena, B. D. Wilts, H. J. Snaith, U. Wiesner, M. Grätzel, U. Steiner, A. Abate, Adv. Energy Mater. 2015, 5, 1501868.
- 71M. M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U. S. Virk, Z. Fan, Adv. Mater. Interfaces 2016, 3, 1500790.
- 72S. Yang, Y. Wang, P. Liu, Y. Cheng, H. J. Zhao, H. G. Yang, Nat. Energy 2016, 1, 15016.
- 73F. Zhang, X. Yang, M. Cheng, W. Wang, L. Sun, Nano Energy 2016, 20, 108–116.
- 74A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Graetzel, H. Han, Science 2014, 345, 295–298.
- 75X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Graetzel, Energy Technol. 2015, 3, 551–555.
- 76X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, M. Wang, Nano Lett. 2015, 15, 2402–2408.
- 77F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, L. Sun, ACS Appl. Mater. Interfaces 2014, 6, 16140–16146.
- 78Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, H. Han, J. Phys. Chem. Lett. 2014, 5, 2160–2164.
- 79H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, T. Ma, J. Phys. Chem. A 2015, 119, 4600–4605.
- 80K. M. Boopathi, R. Mohan, T. Huang, W. Budiawan, M. Lin, C. Lee, K. Ho, C. Chu, J. Mater. Chem. A 2016, 4, 1591–1597.
- 81X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han, M. Graetzel, Nat. Chem. 2015, 7, 703–711.
- 82A. Abate, M. Saliba, D. J. Hollman, S. D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H. J. Snaith, Nano Lett. 2014, 14, 3247–3254.
- 83B. Wang, T. Chen, Adv. Sci. 2016, 3, 1500262.
- 84S. Casaluci, L. Cinà, A. Pockett, P. S. Kubiak, R. G. Niemann, A. Reale, A. Di Carlo, P. J. Cameron, J. Power Sources 2015, 297, 504–510.
- 85D. Yang, Z. Yang, W. Qin, Y. Zhang, S. F. Liu, C. Li, J. Mater. Chem. A 2015, 3, 9401–9405.
- 86L. Q. Zhang, X. W. Zhang, Z. G. Yin, Q. Jiang, X. Liu, J. H. Meng, Y. J. Zhao, H. L. Wang, J. Mater. Chem. A 2015, 3, 12133–12138.
- 87J. J. Zhao, P. Wang, Z. H. Liu, L. Y. Wei, Z. Yang, H. R. Chen, X. Q. Fang, X. L. Liu, Y. H. Mai, Dalton Trans. 2015, 44, 17841–17849.
- 88K. A. Bush, C. D. Bailie, Y. Chen, A. R. Bowring, W. Wang, W. Ma, T. Leijtens, F. Moghadam, M. D. McGehee, Adv. Mater. 2016, 28, 3937–3943.
- 89C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito, Nat. Commun. 2015, 6, 7026.
- 90Y. Zhao, K. Zhu, Chem. Soc. Rev. 2016, 45, 655–689.
- 91T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, T. Baikie, J. Phys. Chem. C 2014, 118, 16458–16462.
- 92A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Graetzel, F. De Angelis, Nano Lett. 2014, 14, 3608–3616.
- 93G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982–988.
- 94I. Borriello, G. Cantele, D. Ninno, Phys. Rev. B 2008, 77, 235214.
- 95J. Lee, D. Seol, A. Cho, N. Park, Adv. Mater. 2014, 26, 4991–4998.
- 96F. Wang, H. Yu, H. Xu, N. Zhao, Adv. Funct. Mater. 2015, 25, 1120–1126.
- 97M. R. Leyden, M. V. Lee, S. R. Raga, Y. Qi, J. Mater. Chem. A 2015, 3, 16097–16103.
- 98S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, K. A. Tae, J. H. Noh, J. Seo, S. I. Seok, J. Am. Chem. Soc. 2016, 138, 3974–3977.
- 99Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X. Zhu, S. Jin, Nano Lett. 2016, 16, 1000–1008.
- 100A. Binek, F. C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. Lett. 2015, 6, 1249–1253.
- 101F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, N. Zhao, Adv. Funct. Mater. 2016, 26, 3417–3423.
- 102J. Lee, D. Kim, H. Kim, S. Seo, S. M. Cho, N. Park, Adv. Energy Mater. 2015, 5, 1501310.
- 103D. B. Mitzi, K. Liang, J. Solid State Chem. 1997, 134, 376–384.
- 104G. Murugadoss, S. Tanaka, G. Mizuta, S. Kanaya, H. Nishino, T. Umeyama, H. Imahori, S. Ito, Jpn. J. Appl. Phys. 2015, 54, 08KF08.
- 105S. Aharon, A. Dymshits, A. Rotem, L. Etgar, J. Mater. Chem. A 2015, 3, 9171–9178.
- 106N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476–480.
- 107N. Pellet, P. Gao, G. Gregori, T. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. 2014, 53, 3151–3157; Angew. Chem. 2014, 126, 3215–3221.
- 108G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, J. Mater. Chem. A 2015, 3, 19688–19695.
- 109R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, H. J. Snaith, Adv. Energy Mater. 2016, 6, 1502458.
- 110Q. Ma, S. Huang, X. Wen, M. A. Green, A. W. Y. Ho-Baillie, Adv. Energy Mater. 2016, 6, 1502202.
- 111R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee, J. Phys. Chem. Lett. 2016, 7, 746–751.
- 112M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 2016, 7, 167–172.
- 113C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Energ. Environ. Sci. 2016, 9, 656–662.
- 114Z. Li, M. Yang, J. Park, S. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28, 284–292.
- 115M. Saliba, T. Matsui, J. Seo, K. Domanski, J. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energ. Environ. Sci. 2016, 9, 1989–1997.
- 116R. M. DeVries, K. I. Kubo, Phys. Rev. Lett. 1973, 30, 325–328.
- 117J. Calabrese, N. L. Jones, R. L. Harlow, N. Herron, D. L. Thorn, Y. Wang, J. Am. Chem. Soc. 1991, 113, 2328–2330.
- 118I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232–11235; Angew. Chem. 2014, 126, 11414–11417.
- 119L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent, J. Am. Chem. Soc. 2016, 138, 2649–2655.
- 120D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843–7850.
- 121D. B. Mitzi, J. Mater. Chem. 2004, 14, 2355–2365.
- 122T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Müller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix, S. G. Mhaisalkar, Adv. Mater. 2016, 28, 3653–3661.
- 123K. Yao, X. Wang, F. Li, L. Zhou, Chem. Commun. 2015, 51, 15430–15433.
- 124N. D. Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E. Yao, Y. Liu, A. Schiffer, Y. Yang, Nano Lett. 2016, 16, 1009–1016.
- 125G. Kieslich, S. Sun, A. K. Cheetham, Chem. Sci. 2014, 5, 4712–4715.
- 126M. Szafranski, M. Jarek, CrystEngComm 2013, 15, 4617–4623.
- 127G. Giorgi, J. Fujisawa, H. Segawa, K. Yamashita, J. Phys. Chem. C 2015, 119, 4694–4701.
- 128H. Hsu, C. Chang, C. Chen, B. Jiang, R. Jeng, C. Cheng, J. Mater. Chem. A 2015, 3, 9271–9277.
- 129Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, S. Hayase, J. Phys. Chem. C 2014, 118, 16651–16659.
- 130N. Mercier, CrystEngComm 2005, 7, 429–432.
- 131D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt, M. K. Nazeeruddin, Adv. Mater. 2016, 28, 2910–2915.
- 132J. Carrillo, A. Guerrero, S. Rahimnejad, O. Almora, I. Zarazua, E. Mas-Marza, J. Bisquert, G. Garcia-Belmonte, Adv. Energy Mater. 2016, 6, 1502246.
- 133D. B. Mitzi, C. D. Dimitrakopoulos, J. Rosner, D. R. Medeiros, Z. T. Xu, C. Noyan, Adv. Mater. 2002, 14, 1772–1776.
- 134A. Buin, R. Comin, J. Xu, A. H. Ip, E. H. Sargent, Chem. Mater. 2015, 27, 4405–4412.
- 135S. Dharani, H. A. Dewi, R. R. Prabhakar, T. Baikie, C. Shi, D. Yonghua, N. Mathews, P. P. Boix, S. G. Mhaisalkar, Nanoscale 2014, 6, 13854–13860.
- 136Q. Wang, M. Lyu, M. Zhang, J. Yun, H. Chen, L. Wang, J. Phys. Chem. Lett. 2015, 6, 4379–4384.
- 137A. D. Sheikh, A. Bera, M. A. Haque, R. B. Rakhi, S. D. Gobbo, H. N. Alshareef, T. Wu, Sol. Energy Mater. Sol. Cells 2015, 137, 6–14.
- 138R. Li, X. Xiang, X. Tong, J. Zou, Q. Li, Adv. Mater. 2015, 27, 3831–3835.
- 139J. Xu, Y. Chen, L. Dai, Nat. Commun. 2015, 6, 8103.
- 140Y. Chen, T. Chen, L. Dai, Adv. Mater. 2015, 27, 1053–1059.
- 141S. A. Kulkarni, T. Baikie, P. P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, J. Mater. Chem. A 2014, 2, 9221–9225.
- 142P. Fedeli, F. Gazza, D. Calestani, P. Ferro, T. Besagni, A. Zappettini, G. Calestani, E. Marchi, P. Ceroni, R. Mosca, J. Phys. Chem. C 2015, 119, 21304–21313.
- 143B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, I. Mora-Sero, J. Phys. Chem. Lett. 2014, 5, 1628–1635.
- 144F. Bella, A. Sacco, G. P. Salvador, S. Bianco, E. Tresso, C. F. Pirri, R. Bongiovanni, J. Phys. Chem. C 2013, 117, 20421–20430.
- 145X. Liu, Z. Cao, H. Huang, X. Liu, Y. Tan, H. Chen, Y. Pei, S. Tan, J. Power Sources 2014, 248, 400–406.
- 146Y. Chen, B. Li, W. Huang, D. Gao, Z. Liang, Chem. Commun. 2015, 51, 11997–11999.
- 147Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, T. Xu, Angew. Chem. Int. Ed. 2015, 54, 7617–7620; Angew. Chem. 2015, 127, 7727–7730.
- 148H. L. Clever, F. J. Johnston, J. Phys. Chem. Ref. Data 1980, 9, 751.
- 149G. W. Leonard, M. E. Smith, D. N. Hume, J. Phys. Chem. 1956, 60, 1493–1495.
- 150Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, F. Yan, Nat. Commun. 2016, 7, 11105.
- 151A. M. Ganose, C. N. Savory, D. O. Scanlon, J. Phys. Chem. Lett. 2015, 6, 4594–4598.
- 152Y. Zhang, S. Chen, P. Xu, H. Xiang, X. Gong, A. Walsh, S. Wei, arXiv preprint 2015, arXiv:1506.01301.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.