Chemoselective Reduction of Tertiary Amides under Thermal Control: Formation of either Aldehydes or Amines
Corresponding Author
Dr. Fredrik Tinnis
Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorAlexey Volkov
Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorTove Slagbrand
Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Prof. Dr. Hans Adolfsson
Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Dr. Fredrik Tinnis
Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorAlexey Volkov
Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorTove Slagbrand
Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Prof. Dr. Hans Adolfsson
Department of Organic Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorAbstract
The chemoselective reduction of amides in the presence of other more reactive reducible functional groups is a highly challenging transformation, and successful examples thereof are most valuable in synthetic organic chemistry. Only a limited number of systems have demonstrated the chemoselective reduction of amides over ketones. Until now, the aldehyde functionality has not been shown to be compatible in any catalytic reduction protocol. Described herein is a [Mo(CO)6]-catalyzed protocol with an unprecedented chemoselectivity and allows for the reduction of amides in the presence of aldehydes and imines. Furthermore, the system proved to be tunable by variation of the temperature, which enabled for either C−O or C−N bond cleavage that ultimately led to the isolation of both amines and aldehydes, respectively, in high chemical yields.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201600097-sup-0001-misc_information.pdf3.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Seyden-Penne, Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd ed., Wiley, New York, 1997;
- 1bW. G. Gribble, Chem. Soc. Rev. 1998, 27, 395.
- 2
- 2aR. Kuwano, M. Takahashi, Y. Ito, Tetrahedron Lett. 1998, 39, 1017–1020;
- 2bH. Sasakuma, Y. Motoyama, H. Nagashima, Chem. Commun. 2007, 4916–4918;
- 2cS. Hanada, E. Tsutsumi, Y. Motoyama, H. Nagashima, J. Am. Chem. Soc. 2009, 131, 15032–15040;
- 2dC. Cheng, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 11304–11307;
- 2eS. Das, Y. Li, C. Bornschein, S. Pisiewicz, K. Kiersch, D. Michalik, F. Gallou, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2015, 54, 12389–12393; Angew. Chem. 2015, 127, 12566–12570.
- 3
- 3aY. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama, H. Nagashima, Angew. Chem. Int. Ed. 2009, 48, 9511–9514; Angew. Chem. 2009, 121, 9675–9678;
- 3bS. Das, B. Wendt, K. Möller, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2012, 51, 1662–1666; Angew. Chem. 2012, 124, 1694–1698;
- 3cH. Tsutsumi, Y. Sunada, H. Nagashima, Chem. Commun. 2011, 47, 6581–6583;
- 3dD. Bézier, G. T. Venkanna, J.-B. Sortais, C. Darcel, ChemCatChem 2011, 3, 1747–1750;
- 3eA. Volkov, E. Buitrago, H. Adolfsson, Eur. J. Org. Chem. 2013, 2066–2070;
- 3fS. Zhou, K. Junge, D. Addis, S. Das, M. Beller, Angew. Chem. Int. Ed. 2009, 48, 9507–9510; Angew. Chem. 2009, 121, 9671–9674;
- 3gB. Blom, G. Tan, S. Enthaler, S. Inoue, J. D. Epping, M. Driess, J. Am. Chem. Soc. 2013, 135, 18108–18120.
- 4
- 4aS. Das, D. Addis, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2010, 132, 1770–1771;
- 4bS. Das, D. Addis, K. Junge, M. Beller, Chem. Eur. J. 2011, 17, 12186–12192;
- 4cO. O. Kovalenko, A. Volkov, H. Adolfsson, Org. Lett. 2015, 17, 446–449.
- 5Y. Mikami, A. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K. Kaneda, Chem. Eur. J. 2011, 17, 1768–1772.
- 6T. Dombray, C. Helleu, C. Darcel, J.-B. Sortais, Adv. Synth. Catal. 2013, 355, 3358–3362.
- 7N. Sakai, M. Takeoka, T. Kumaki, H. Asano, T. Konakahara, Y. Ogiwara, Tetrahedron Lett. 2015, 56, 6448–6451.
- 8N. L. Lampland, M. Hovey, D. Mukherjee, A. D. Sadow, ACS Catal. 2015, 5, 4219–4226.
- 9
- 9aY. Li, J. A. Molina de La Torre, K. Grabow, U. Bentrup, K. Junge, S. Zhou, A. Brückner, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 11577–11580; Angew. Chem. 2013, 125, 11791–11794;
- 9bR. C. Chadwick, V. Kardelis, P. Lim, A. Adronov, J. Org. Chem. 2014, 79, 7728–7733;
- 9cE. Blondiaux, T. Cantat, Chem. Commun. 2014, 50, 9349–9352.
- 10
- 10aH. C. Brown, A. Tsukamoto, J. Am. Chem. Soc. 1959, 81, 502–503;
- 10bN. S. Ramegowda, M. N. Modi, A. K. Koul, J. M. Bora, C. K. Narang, N. K. Mathur, Tetrahedron 1973, 29, 3985–3986.
- 11
- 11aG. Barbe, A. B. Charette, J. Am. Chem. Soc. 2008, 130, 18–19;
- 11bG. Pelletier, W. S. Bechara, A. B. Charette, J. Am. Chem. Soc. 2010, 132, 12817–12819.
- 12
- 12aJ. M. White, A. R. Tunoori, G. I. Georg, J. Am. Chem. Soc. 2000, 122, 11995–11996;
- 12bJ. T. Spletstoser, J. M. White, A. R. Tunoori, G. I. Georg, J. Am. Chem. Soc. 2007, 129, 3408–3419.
- 13S. Bower, K. A. Kreutzer, S. L. Buchwald, Angew. Chem. Int. Ed. Engl. 1996, 35, 1515–1516; Angew. Chem. 1996, 108, 1662–1664. Buchwald and co-workers observed that the reaction could be performed in catalytic fashion using (EtO)3SiH. However, because of the hazards connected with this silane, further development of the protocol was discontinued.
- 14S. Laval, W. Dayoub, A. Favre-Reguillon, P. Demonchaux, G. Mignani, M. Lemaire, Tetrahedron Lett. 2010, 51, 2092–2094.
- 15Y. Motoyama, M. Aoki, N. Takaoka, R. Aoto, H. Nagashima, Chem. Commun. 2009, 1574–1576.
- 16A. Volkov, F. Tinnis, T. Slagbrand, I. Pershagen, H. Adolfsson, Chem. Commun. 2014, 50, 14508–14511.
- 17Performing the reactions at 60 °C or below required preactivation of the molybdenum complex at 80 °C. TMDS was then added when the desired temperature was reached.
- 18D. Addis, S. Das, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6004–6011; Angew. Chem. 2011, 123, 6128–6135.
- 19R. Arias-Ugarte, H. K. Sharma, A. L. C. Morris, K. H. Pannell, J. Am. Chem. Soc. 2012, 134, 848–851.
- 20S. Park, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 640–653.
- 21S. Hanada, Y. Motoyama, H. Nagashima, Eur. J. Org. Chem. 2008, 4097–4100.
- 22H. Feldman, S. Gauthier, J. Hecker, B. Vellas, B. Emir, V. Mastey, P. Subbiah, J. Am. Geriatr. Soc. 2003, 51, 737–744.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.