The Uptake and Assembly of Alkanes within a Porous Nanocapsule in Water: New Information about Hydrophobic Confinement
Dr. Sivil Kopilevich
Department of Chemistry, Ben-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology, Beer Sheva, 84105 Israel
Search for more papers by this authorDr. Hugo Gottlieb
Department of Chemistry, Bar-Ilan University, Ramat Gan, 529002 Israel
Search for more papers by this authorDr. Keren Keinan-Adamsky
Department of Chemistry, Bar-Ilan University, Ramat Gan, 529002 Israel
Search for more papers by this authorProf. Dr. Achim Müller
Fakultät für Chemie, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
Search for more papers by this authorCorresponding Author
Prof. Ira A. Weinstock
Department of Chemistry, Ben-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology, Beer Sheva, 84105 Israel
Search for more papers by this authorDr. Sivil Kopilevich
Department of Chemistry, Ben-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology, Beer Sheva, 84105 Israel
Search for more papers by this authorDr. Hugo Gottlieb
Department of Chemistry, Bar-Ilan University, Ramat Gan, 529002 Israel
Search for more papers by this authorDr. Keren Keinan-Adamsky
Department of Chemistry, Bar-Ilan University, Ramat Gan, 529002 Israel
Search for more papers by this authorProf. Dr. Achim Müller
Fakultät für Chemie, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
Search for more papers by this authorCorresponding Author
Prof. Ira A. Weinstock
Department of Chemistry, Ben-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology, Beer Sheva, 84105 Israel
Search for more papers by this authorAbstract
In Nature, enzymes provide hydrophobic cavities and channels for sequestering small alkanes or long-chain alkyl groups from water. Similarly, the porous metal oxide capsule [{MoVI6O21(H2O)6}12{(MoV2O4)30(L)29(H2O)2}]41− (L=propionate ligand) features distinct domains for sequestering differently sized alkanes (as in Nature) as well as internal dimensions suitable for multi-alkane clustering. The ethyl tails of the 29 endohedrally coordinated ligands, L, form a spherical, hydrophobic “shell”, while their methyl end groups generate a hydrophobic cavity with a diameter of 11 Å at the center of the capsule. As such, C7 to C3 straight-chain alkanes are tightly intercalated between the ethyl tails, giving assemblies containing 90 to 110 methyl and methylene units, whereas two or three ethane molecules reside in the central cavity of the capsule, where they are free to rotate rapidly, a phenomenon never before observed for the uptake of alkanes from water by molecular cages or containers.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201511341-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Carroll, Natural Gas Hydrates: A Guide for Engineers, 2nd. ed., Elsevier, Burlington, MA, 2009;
- 1bE. D. Sloan, Jr., C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd. ed., CRC Press, NW, 2007;
10.1201/9781420008494 Google Scholar
- 1c Natural Gas Hydrates in Oceanic and Permafrost Environments (Ed.: ), Springer, Berlin, 2003.
- 2
- 2aW. Wang, A. D. Liang, S. J. Lippard, Acc. Chem. Res. 2015, 48, 2632–2639;
- 2bS. Sirajuddin, A. C. Rosenzweig, Biochemistry 2015, 54, 2283–2294.
- 3J. Park, H. V. Pham, K. Mogensen, T. I. Solling, M. Vad Bennetzen, K. N. Houk, J. Org. Chem. 2015, 80, 997–1005.
- 4D. Ajami, J. Rebek, Acc. Chem. Res. 2013, 46, 990–999.
- 5
- 5aZ. Takacs, E. Steiner, J. Kowalewski, T. Brotin, J. Phys. Chem. B 2014, 118, 2134–2146;
- 5bV. Guralnik, L. Avram, Y. Cohen, Org. Lett. 2014, 16, 5592–5595;
- 5cL. Avram, Y. Cohen, J. Rebek, Jr., Chem. Commun. 2011, 47, 5368–5375;
- 5dL. Avram, Y. Cohen, Org. Lett. 2006, 8, 219–222;
- 5eL. Garel, J.-P. Dutasta, A. Collet, Angew. Chem. Int. Ed. Engl. 1993, 32, 1169–1171; Angew. Chem. 1993, 105, 1249–1251;
- 5fC. Browne, W. J. Ramsay, T. K. Ronson, J. Medley-Hallam, J. R. Nitschke, Angew. Chem. Int. Ed. 2015, 54, 11122–11127; Angew. Chem. 2015, 127, 11274–11279.
- 6F. Hof, J. Rebek, Proc. Natl. Acad. Sci. USA 2002, 99, 4775–4777.
- 7A. Scarso, L. Trembleau, J. Rebek, J. Am. Chem. Soc. 2004, 126, 13512–13518.
- 8Z. Laughrey, B. C. Gibb, Chem. Soc. Rev. 2011, 40, 363–386.
- 9S. Liu, D. H. Russell, N. F. Zinnel, B. C. Gibb, J. Am. Chem. Soc. 2013, 135, 4314–4324.
- 10H. Gan, C. J. Benjamin, B. C. Gibb, J. Am. Chem. Soc. 2011, 133, 4770–4773.
- 11
- 11aS. Chen, M. Yamasaki, S. Polen, J. Gallucci, C. M. Hadad, J. D. Badjić, J. Am. Chem. Soc. 2015, 137, 12276–12281;
- 11bY. Ruan, P. W. Peterson, C. M. Hadad, J. D. Badjic, Chem. Commun. 2014, 50, 9086–9089;
- 11cJ. L. Bolliger, T. K. Ronson, M. Ogawa, J. R. Nitschke, J. Am. Chem. Soc. 2014, 136, 14545–14553.
- 12
- 12aD. B. Smithrud, T. B. Wyman, F. Diederich, J. Am. Chem. Soc. 1991, 113, 5420–5426;
- 12bD. B. Smithrud, F. Diederich, J. Am. Chem. Soc. 1990, 112, 339–343.
- 13
- 13aW. M. Nau, M. Florea, K. I. Assaf, Isr. J. Chem. 2011, 51, 559–577;
- 13bM. Florea, W. M. Nau, Angew. Chem. Int. Ed. 2011, 50, 9338–9342; Angew. Chem. 2011, 123, 9510–9514;
- 13cY. Miyahara, K. Abe, T. Inazu, Angew. Chem. Int. Ed. 2002, 41, 3020–3023;
10.1002/1521-3773(20020816)41:16<3020::AID-ANIE3020>3.0.CO;2-4 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 3146–3149.
- 14Y. H. Ko, H. Kim, Y. Kim, K. Kim, Angew. Chem. Int. Ed. 2008, 47, 4106–4109; Angew. Chem. 2008, 120, 4174–4177.
- 15Hydrophobic interactions are of general importance and play a key role in numerous biological and industrial processes; see:
- 15aC. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed., Wiley, New York, 1980;
- 15bP. C. Nelson, M. Radosavljević, S. Bromberg, Biological Physics: Energy, Information, Life, W. H. Freeman, New York, 2008;
- 15cH.-J. Schneider, Acc. Chem. Res. 2015, 48, 1815–1822;
- 15dF. Biedermann, W. M. Nau, H.-J. Schneider, Angew. Chem. Int. Ed. 2014, 53, 11158–11171; Angew. Chem. 2014, 126, 11338–11352;
- 15eA. Müller, S. Garai, C. Schäffer, A. Merca, H. Bögge, A. J. M. Al-Karawi, T. K. Prasad, Chem. Eur. J. 2014, 20, 6659–6664;
- 15fW. Blokzijl, J. B. F. N. Engberts, Angew. Chem. Int. Ed. Engl. 1993, 32, 1545–1579; Angew. Chem. 1993, 105, 1610–1650.
- 16
- 16aS. Kopilevich, A. Müller, I. A. Weinstock, J. Am. Chem. Soc. 2015, 137, 12740–12743;
- 16bS. Kopilevich, A. Gil, M. Garcia-Ratés, J. Bonet-Ávalos, C. Bo, A. Müller, I. A. Weinstock, J. Am. Chem. Soc. 2012, 134, 13082–13088;
- 16cA. Ziv, A. Grego, S. Kopilevich, L. Zeiri, P. Miro, C. Bo, A. Müller, I. A. Weinstock, J. Am. Chem. Soc. 2009, 131, 6380–6382;
- 16dN. Watfa, D. Melgar, M. Haouas, F. Taulelle, A. Hijazi, D. Naoufal, J. B. Avalos, S. Floquet, C. Bo, E. Cadot, J. Am. Chem. Soc. 2015, 137, 5845–5851.
- 17For a Concept Article on Mo132, see:
- 17aA. Müller, P. Gouzerh, Chem. Eur. J. 2014, 20, 4862–4873; see also:
- 17bA. Müller, P. Gouzerh, Chem. Soc. Rev. 2012, 41, 7431–7463;
- 17cA. Grego, A. Müller, I. A. Weinstock, Angew. Chem. Int. Ed. 2013, 52, 8358–8362; Angew. Chem. 2013, 125, 8516–8520;
- 17dC. Schäffer, A. M. Todea, H. Bögge, O. A. Petina, D. Rehder, E. T. K. Haupt, A. Müller, Chem. Eur. J. 2011, 17, 9634–9639;
- 17eC. Schäffer, H. Bögge, A. Merca, I. A. Weinstock, D. Rehder, E. T. K. Haupt, A. Müller, Angew. Chem. Int. Ed. 2009, 48, 8051–8056; Angew. Chem. 2009, 121, 8195–8200.
- 18
- 18aC. S. Johnson, Jr., Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, 203–256;
- 18bH. Friebolin, Basic One- and Two-Dimensional NMR Spectroscopy, 5th ed., Wiley-VCH, Weinheim, 2010.
- 19
- 19aA. Bondi, J. Phys. Chem. 1964, 68, 441–451;
- 19baccording to the 55 % rule (see Ref. [19c]), the 700 Å3 central cavity should be capable of hosting up to 8 or 9 equiv of ethane. Based on the effect of ethane pressure on uptake (see the Supporting Information), this value, corresponding to optimal binding, might indeed be reached if the ethane pressure was increased to 9 atm;
- 19cS. Mecozzi, J. Rebek, Jr., Chem. Eur. J. 1998, 4, 1016–1022.
10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B CAS Web of Science® Google Scholar
- 20Considering six chemically equivalent protons for C2H6, versus four for CH4, and the larger average number of equivalents of encapsulated ethane (i.e., 2.7 vs. 0.5 for CH4), the 1H NMR signals of the ethane guests were eight times more intense than those of methane.
- 21The groups of Cohen and Rebek observed similar phenomena for occluded molecules of halocarbon solvents in hydrogen-bonded (organic-solvent-soluble) pyrogallol[4]arene capsules; see Refs. [5b–d]. Following their lead, we used changes in the NMR field strength and DOSY NMR spectroscopy (Figure S4) to conclude that the set of sharp signals is due to rapidly rotating guest molecules in slightly different encapsulation environments.
- 22This is not surprising as each capsule is populated by either two or three ethane molecules (an average of 2.7 equiv was determined by 1H NMR spectroscopy). Furthermore, the number of propionate ligands in each capsule may vary slightly, from 28 to 30 (i.e., 29±1), and these may undergo exchange between the 30 {MoV2O4L} binding sites and less well defined sites under the 12 pentagonal {MoVI6O21(H2O)6} units (see Ref. [23]). These slightly differing chemical environments give rise to a Gaussian distribution of closely separated signals.
- 23O. Petina, D. Rehder, E. T. K. Haupt, A. Grego, I. A. Weinstock, A. Merca, H. Bögge, J. Szakacs, A. Müller, Angew. Chem. Int. Ed. 2011, 50, 410–414; Angew. Chem. 2011, 123, 430–434.
- 24By greatly increasing the intensity used in plotting, the resultant spectrum, albeit very “noisy”, includes a small cross peak indicative of a weak interaction between ethane and the α-carbon protons of the propionate ligands. This is attributed to the 109° O2C-Cα-Cβ angle of the ligand in combination with bending about the Cα atom and dynamic room-temperature “tilting” of the entire η2-bound ligand relative to the dimolybdenum linkages of the capsule.
- 25
- 25aE. D. Sloan, Nature 2003, 426, 353–363;
- 25bD. W. Davidson, C. I. Ratcliffe, J. A. Ripmeester, J. Incl. Phen. 1984, 2, 239–247.
- 26For two ethane guests, P=nRT/V, with n=2×(6.022×1023 mol−1)−1, R=82.06 cm3 atm mol−1 K−1, T=296 K, and V=7×10−22 cm3.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.