Acid Treatment Enables Suppression of Electron–Hole Recombination in Hematite for Photoelectrochemical Water Splitting
Yi Yang
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
Search for more papers by this authorMark Forster
Department of Chemistry and Stephenson, The University of Liverpool, Liverpool, L69 7ZD UK
Search for more papers by this authorDr. Yichuan Ling
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
Search for more papers by this authorDr. Gongming Wang
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
Search for more papers by this authorDr. Teng Zhai
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
School of Chemistry and Chemistry Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorProf. Yexiang Tong
School of Chemistry and Chemistry Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Alexander J. Cowan
Department of Chemistry and Stephenson, The University of Liverpool, Liverpool, L69 7ZD UK
Search for more papers by this authorCorresponding Author
Prof. Yat Li
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
Search for more papers by this authorYi Yang
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
Search for more papers by this authorMark Forster
Department of Chemistry and Stephenson, The University of Liverpool, Liverpool, L69 7ZD UK
Search for more papers by this authorDr. Yichuan Ling
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
Search for more papers by this authorDr. Gongming Wang
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
Search for more papers by this authorDr. Teng Zhai
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
School of Chemistry and Chemistry Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorProf. Yexiang Tong
School of Chemistry and Chemistry Engineering, Sun Yat-Sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Alexander J. Cowan
Department of Chemistry and Stephenson, The University of Liverpool, Liverpool, L69 7ZD UK
Search for more papers by this authorCorresponding Author
Prof. Yat Li
Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064 USA
Search for more papers by this authorAbstract
We report a strategy for efficient suppression of electron–hole recombination in hematite photoanodes. Acid-treated hematite showed a substantially enhanced photocurrent density compared to untreated samples. Electrochemical impedance spectroscopy studies revealed that the enhanced photocurrent is partly due to improved efficiency of charge separation. Transient absorption spectroscopic studies coupled to electrochemical measurements indicate that, in addition to improved bulk electrochemical properties, acid-treated hematite has significantly decreased surface electron–hole recombination losses owing to a greater yield of the trapped photoelectrons being extracted to the external circuit.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201510869-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Kay, I. Cesar, M. Gratzel, J. Am. Chem. Soc. 2006, 128, 15714–15721.
- 2C. Kronawitter, I. Zegkinoglou, S. Shen, P. Liao, I. Cho, O. Zandi, Y. Liu, K. Lashgari, G. Westin, J. Guo, F. Himpsel, E. Carter, X. Zheng, T. Hamann, B. Koel, S. Mao, L. Vayssieres, Energy Environ. Sci. 2014, 7, 3100–3121.
- 3W. Li, D. He, Y. He, X. Yao, R. Grimm, G. Brudvig, D. Wang, Angew. Chem. Int. Ed. 2015, 54, 11428–11432; Angew. Chem. 2015, 127, 11590–11594.
- 4C. Du, M. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping, D. Wang, Angew. Chem. Int. Ed. 2013, 52, 12692–12695; Angew. Chem. 2013, 125, 12924–12927.
- 5M. Zhou, H. Wu, J. Bao, L. Liang, X. Lou, Y. Xie, Angew. Chem. Int. Ed. 2013, 52, 8579–8583; Angew. Chem. 2013, 125, 8741–8745.
- 6T. Hisatomi, F. Le Formal, M. Cornuz, J. Brillet, N. Tetreault, K. Sivula, M. Gratzel, Energy Environ. Sci. 2011, 4, 2512–2515.
- 7F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel, K. Sivula, Chem. Sci. 2011, 2, 737–743.
- 8J. Brillet, M. Gratzel, K. Sivula, Nano Lett. 2010, 10, 4155–4160.
- 9Y. Ling, G. Wang, D. Wheeler, J. Zhang, Y. Li, Nano Lett. 2011, 11, 2119–2125.
- 10R. Liu, Z. Zheng, J. Spurgeon, X. Yang, Energy Environ. Sci. 2014, 7, 2504–2517.
- 11P. Liao, J. Keith, E. Carter, J. Am. Chem. Soc. 2012, 134, 13296–13309.
- 12K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Noh, Y. Jing, S. Jin, P. Yu, D. Wang, Energy Environ. Sci. 2012, 5, 7872–7877.
- 13G. Wang, Y. Ling, X. Lu, T. Zhai, F. Qian, Y. Tong, Y. Li, Nanoscale 2013, 5, 4129–4133.
- 14M. Barroso, A. Cowan, S. Pendlebury, M. Gratzel, D. Klug, J. Durrant, J. Am. Chem. Soc. 2011, 133, 14868–14871.
- 15Y. Ma, A. Kafizas, S. Pendleburya, J. Durrant, J. Mater. Chem. A, 2015, 3, 20649-20657.
- 16C. Cummings, F. Marken, L. Peter, A. Tahir, K. Wijayantha, Chem. Commun. 2012, 48, 2027–2029.
- 17J. Jang, C. Du, Y. Ye, Y. Lin, X. Yao, J. Thorne, E. Liu, G. McMahon, J. Zhu, A. Javey, J. Guo, D. Wang, Nat. Commun. 2015, 6, 7447.
- 18I. Cho, H. Han, M. Logar, J. Park, X. Zheng, Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201501840.
- 19G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. Fitzmorris, C. Wang, J. Zhang, Y. Li, Nano Lett. 2011, 11, 3026–3033.
- 20L. Xi, S. Chiam, W. Mak, P. Tran, J. Barber, S. Loo, L. Wong, Chem. Sci. 2013, 4, 164–169.
- 21T. Jeon, W. Choi, H. Park, J. Phys. Chem. C 2011, 115, 7134–7142.
- 22H. Dotan, K. Sivula, M. Gratzel, A. Rothschild, S. Warren, Energy Environ. Sci. 2011, 4, 958–964.
- 23M. Forster, Y. Ling, Y. Yang, D. Klug, Y. Li, A. J. Cowan, Chem. Sci., 2015 , 6, 4009-4016.
- 24M. Barroso, S. Pendlebury, A. J. Cowan, J. Durrant, Chem. Sci. 2013, 4, 2724–2734.
- 25A. J. Cowan, C. Barnett, S. Pendlebury, M. Barroso, K. Sivula, M. Gratzel, J. Durrant, D. Klug, J. Am. Chem. Soc. 2011, 133, 10134–10140.
- 26S. Pendlebury, A. J. Cowan, M. Barroso, K. Sivula, J. Ye, M. Gratzel, D. Klug, J. Tang, J. Durrant, Energy Environ. Sci. 2012, 5, 6304–6312.
- 27K. Sivula, J. Phys. Chem. Lett. 2013, 4, 1624–1633.
- 28L. Steier, I. H. Cardona, S. Gimenez, F. F. Santiago, J. Bisquert, S. D. Tilley, M. Gratzel, Adv. Funct. Mater. 2014, 24, 7681–7688.
- 29O. Zandi, T. W. Hamann, J. Phys. Chem. Lett. 2014, 5, 1522–1526.
- 30P. Michael J. Pilling, Reaction Kinetics, 2nd ed., Oxford University Press, Oxford, 1996.
- 31D. Cao, W. Luo, J. Feng, X. Zhao, Z. Li, Z. Zou, Energy Environ. Sci. 2014, 7, 752–759.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.