β-Ag3RuO4, a Ruthenate(V) Featuring Spin Tetramers on a Two-Dimensional Trigonal Lattice
Dr. Beluvalli E. Prasad
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Search for more papers by this authorProf. Pavel Kazin
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Department of Chemistry, Moscow State University, 119991 Moscow, Russia
Search for more papers by this authorDr. Alexander C. Komarek
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Search for more papers by this authorProf. Dr. Claudia Felser
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Martin Jansen
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany
Search for more papers by this authorDr. Beluvalli E. Prasad
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Search for more papers by this authorProf. Pavel Kazin
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Department of Chemistry, Moscow State University, 119991 Moscow, Russia
Search for more papers by this authorDr. Alexander C. Komarek
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Search for more papers by this authorProf. Dr. Claudia Felser
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Martin Jansen
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany
Search for more papers by this authorAbstract
Open-shell solids exhibit a plethora of intriguing physical phenomena that arise from a complex interplay of charge, spin, orbital, and spin-state degrees of freedom. Comprehending these phenomena is an indispensable prerequisite for developing improved functional materials. This type of understanding can be achieved, on the one hand, by experimental and theoretical investigations into known systems, or by synthesizing new solids displaying unprecedented structural and/or electronic features. β-Ag3RuO4 may serve as such a model system because it possesses a remarkable anionic structure, consisting of tetrameric polyoxoanions (Ru4O16)12−, and is an embedded fragment of a 2D trigonal MO2 lattice. The notorious frustration of antiferromagnetic (AF) exchange couplings on such lattices is thus lifted, and instead strong AF occurs within the oligomeric anion, where only one exchange path remains frustrated among the relevant six. The strong magnetic anisotropy of the [Ru4O16]12− ion, and the effectively orbital nature of its net magnetic moment, implies that this anion may reveal the properties of a single-molecule magnet if well-diluted in a diamagnetic matrix.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201510576-sup-0001-misc_information.pdf448.6 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Bussmann-Holder, J. Phys. Condens. Matter 2012, 24, 273202 (29pp).
- 2
- 2aW. Hesse, M. Jansen, W. Schnick, Prog. Solid State Chem. 1989, 19, 47–110;
- 2bM. Jansen, H. Nuss, Z. Anorg. Allg. Chem. 2007, 633, 1307–1315;
- 2cJ. Winterlik, G. H. Fecher, C. A. Jenkins, C. Felser, C. Mühle, K. Doll, M. Jansen, L. M. Sandratskii, J. Kübler, Phys. Rev. Lett. 2009, 102, 016401.
- 3
- 3aA. von Hippel, Rev. Mod. Phys. 1950, 22, 221–237;
- 3bH. Ito, Y. Shiozaki, E. Sawaguchi, J. Phys. Soc. Jpn. 1983, 52, 913–919;
- 3cX. H. Wang, I. W. Chen, X. Y. Deng, Y. O. Wang, L. T. Li, J. Adv. Ceram. 2015, 4, 1–21.
- 4
- 4aJ. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. Leclair, T. S. Santos, S. Moodera, Nat. Mater. 2006, 5, 298–304;
- 4bA. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C. N. R. Rao, Phys. Rev. B 2006, 74, 161306.
- 5
- 5aS. N. Putilin, E. Antipov, O. Chmaissem, M. Marezio, Nature 1993, 362, 226–228;
- 5bA. Schilling, M. Cantoni, J. D. Guo, H. R. Ott, Nature 1993, 363, 56–58;
- 5cC. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng, Y. Y. Xue, Nature 1993, 365, 323–325.
- 6
- 6aM. F. Collins, O. A. Petrenko, Can. J. Phys. 1997, 75, 605–655;
- 6bA. P. Ramirez, Annu. Rev. Mater. Sci. 1994, 24, 453–480;
- 6cA. I. Coldea, L. Seabra, A. McCollam, A. Carrington, L. Malone, A. F. Bangura, D. Vignolles, P. G. van Rhee, R. D. McDonald, T. Sörgel, M. Jansen, N. Shannon, R. Coldea, Phys. Rev. B 2014, 90, 020401;
- 6dY. Drees, D. Lamago, A. Piovano, A. C. Komarek, Nat. Commun. 2013, 4, 2449;
- 6eY. Drees, Z. W. Li, A. Ricci, M. Rotter, W. Schmidt, D. Lamago, O. Sobolev, U. Rütt, O. Gutowski, M. Sprung, A. Piovano, J. P. Castellan, A. C. Komarek, Nat. Commun. 2014, 5, 5731.
- 7
- 7aN. Stüßer, M. Sofin, R. Bircher, H.-U. Güdel, M. Jansen, Chem. Eur. J. 2006, 12, 5452–5457;
- 7bA. Jesche, R. W. McCallum, S. Thimmaiah, J. L. Jacobs, V. Taufour, A. Kreyssig, R. S. Houk, S. L. BuO'ko, P. C. Canfield, Nat. Commun. 2014, 5, 3333;
- 7cP. E. Kazin, M. A. Zykin, W. Schnelle, C. Felser, M. Jansen, Chem. Commun. 2014, 50, 9325–9328.
- 8Crystal data of Ag3RuO4: monoclinic, space group C2/c (No.15), a=1354.42(5) pm, b=1124.27(3) pm, c=1279.33(4) pm, β=120.9425(2)°, V=1670.84(9)×106 pm3,ρcalcd=7.7712 g cm−3, Z=16, μMoKα=17.285 mm−1, F(000)=3472, λ=71.069 pm, Bruker D8 VENTURE X-ray diffractometer, bent graphite monochromator, T=293 K, ω-/ϕ-scan, 3137 measured reflections, 1522 symmetry independent reflections (2θmax=50°), 150 refined parameters. Multi-scan absorption correction program (SADABS) was used. The structure solution and refinement have been performed using Jana2006:[15] R=0.0333 and wR2=0.0787. Twinning matrix: (1 0 −1, 0, 1, 0, 0, 0, −1); with twin fractions (50.1 (2)%:49.9(2)%). Further details on the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49) 7247-808-666; e-mail: crysdata@fiz-karlsruhe. de), on quoting the depository number CSD-430440.
- 9
- 9aJ. R. Dahn, W. R. McKinnon, R. R. Haering, W. J. L. Buyers, B. M. Powell, Can. J. Phys. 1980, 58, 207–213;
- 9bJ. G. White, H. L. Pinch, Inorg. Chem. 1970, 9, 2581–2583;
- 9cB. van Laar, D. J. W. Ijdo, J. Solid State Chem. 1971, 3, 590–595.
- 10W. Klein, M. Jansen, Acta Crystallogr. Sect. C 2005, 61, i 1–i2.
- 11G. A. Kakos, G. Winter, Aust. J. Chem. 1969, 22, 97–107.
- 12
- 12aS. G. Ebbinghaus, E. W. Scheidt, T. Götzfried, Phys. Rev. B 2007, 75, 144414;
- 12bT. Götzfried, A. Reller, S. G. Ebbinghaus, Solid State Sci. 2004, 6, 1205–1210;
- 12cT. Götzfried, A. Reller, S. G. Ebbinghaus, Inorg. Chem. 2005, 44, 6550–6557.
- 13R. L. Carlin Magnetochemistry, Springer, Berlin, 1986.
10.1007/978-3-642-70733-9 Google Scholar
- 14A. K. Nayak, M. Nicklas, S. Chadov, P. Khuntia, C. Shekhar, A. Kalache, M. Baenitz, Y. Skourski, V. K. Guduru, A. Puri, U. Zeitler, J. M. D. Coey, C. Felser, Nat. Mater. 2015, 14, 679–684.
- 15
- 15aV. Petricek, M. Dusek, L. Palatinus, Jana 2006, Structure Determination Software Programs, Institute of Physics, Praha, Czech Republic, 2006;
- 15bL. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786–790.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.