Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides
Haizea Echave
Departamento de Química Orgánica I, Facultad de Químicas, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain
Search for more papers by this authorDr. Rosa López
Departamento de Química Orgánica I, Facultad de Químicas, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Claudio Palomo
Departamento de Química Orgánica I, Facultad de Químicas, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain
Search for more papers by this authorHaizea Echave
Departamento de Química Orgánica I, Facultad de Químicas, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain
Search for more papers by this authorDr. Rosa López
Departamento de Química Orgánica I, Facultad de Químicas, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Claudio Palomo
Departamento de Química Orgánica I, Facultad de Químicas, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain
Search for more papers by this authorAbstract
The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201510482-sup-0001-misc_information.pdf4.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. F. Utter, D. B. Keech, J. Biol. Chem. 1963, 238, 2603–2608;
- 1bD. Voet, J. G. Voet, in Biochemistry, 3rd ed., Wiley, New York, 2004.
- 2For a review on asymmetric transformations of 1,2-dicarbonyl compounds as pronuclephiles, see:
- 2aW. Raimondi, D. Bonne, J. Rodriguez, Chem. Commun. 2012, 48, 6763–6775;
- 2bW. Raimondi, D. Bonne, J. Rodriguez, Angew. Chem. Int. Ed. 2012, 51, 40–42; Angew. Chem. 2012, 124, 40–42; For a review on the chemistry of α-oxoesters, see:
- 2cB. Eftekhari-Sis, M. Zirak, Chem. Rev. 2015, 115, 151–264.
- 3K. Juhl, N. Gathergood, K. A. Jørgensen, Chem. Commun. 2000, 2211–2212.
- 4P. Dambruoso, A. Massi, A. Dondoni, Org. Lett. 2005, 7, 4657–4660.
- 5
- 5aN. Gathergood, K. Juhl, T. B. Poulsen, K. Thordrup, K. A. Jørgensen, Org. Biomol. Chem. 2004, 2, 1077–1085;
- 5bH. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. Int. Ed. 2004, 43, 1983–1986; Angew. Chem. 2004, 116, 2017–2020.
- 6B. Zhang, Z. Jiang, X. Zhou, S. Lu, J. Li, Y. Liu, C. Li, Angew. Chem. Int. Ed. 2012, 51, 13159–13162; Angew. Chem. 2012, 124, 13336–13339.
- 7V. Liautard, D. Jardel, C. Davies, M. Berlande, T. Buffeteau, D. Cavagnat, F. Robert, J.-M. Vicent, Y. Landais, Chem. Eur. J. 2013, 19, 14532–14539.
- 8
- 8aD. Enders, T. Gaspari, Chem. Commun. 2007, 88–90;
- 8bS. Luo, H. Xu, L. Chen, J.-P. Cheng, Org. Lett. 2008, 10, 1775–1778;
- 8cO. El-Sepelgy, D. Schwarzer, P. Oskwarek, J. Mlynarski, Eur. J. Org. Chem. 2012, 2724–2727;
- 8dD. Zhang, S. Johnson, H.-L. Cui, F. Tanaka, Asian J. Org. Chem. 2014, 3, 391–394.
- 9O. El-Sepelgy, J. Mlynarski, Adv. Synth. Catal. 2013, 355, 281–286.
- 10
- 10aD. Enders, H. Dyker, G. Reabe, Angew. Chem. Int. Ed. Engl. 1992, 31, 618–620; Angew. Chem. 1992, 104, 649–651;
- 10bD. Enders, H. Dyker, G. Raabe, Angew. Chem. Int. Ed. Engl. 1993, 32, 421–423; Angew. Chem. 1993, 105, 420–423.
- 11W. Guo, X. Wang, B. Zhang, S. Shen, X. Zhou, P. Wang, Y. Liu, C. Li, Chem. Eur. J. 2014, 20, 8545–8550.
- 12Direct activation of 1,2-dicarbonyl compounds has been achieved through metal catalysis with endogenous basic counteranions. See:
- 12aK. Juhl, K. A. Jørgensen, J. Am. Chem. Soc. 2002, 124, 2420–2421;
- 12bA. Nakamura, S. Lectard, D. Hashizume, Y. Hamashima, M. Sodeoka, J. Am. Chem. Soc. 2010, 132, 4036–4037;
- 12cD. Shi, Y. Xie, H. Zhou, C. Xia, H. Huang, Angew. Chem. Int. Ed. 2012, 51, 1248–1251; Angew. Chem. 2012, 124, 1274–1277;
- 12dW. Li, X. Liu, Z. Mao, Q. Chen, R. Wang, Org. Biomol. Chem. 2012, 10, 4767–4773;
- 12eQ. Liang, J. He, B. Ni, Tetrahedron: Asymmetry 2014, 25, 1146–1149;
- 12fG. Lu, H. Morimoto, S. Matsunaga, M. Shibasaki, Angew. Chem. Int. Ed. 2008, 47, 6847–6850; Angew. Chem. 2008, 120, 6953–6956. Through the installation of an electron withdrawing group at the β-position, see:
- 12gY. Liu, Y. Wang, H. Song, Z. Zhou, C. Tang, Adv. Synth. Catal. 2013, 355, 2544–2549;
- 12hA. K. Basak, N. Shimada, W. F. Bow, D. A. Vicic, M. A. Tius, J. Am. Chem. Soc. 2010, 132, 8266–8267.
- 13Michael additions to nitroalkenes:
- 13aO. Baslé, W. Raimondi, M. Sanchez Duque, D. Bonne, T. Constantieux, J. Rodriguez, Org. Lett. 2010, 12, 5246–5249;
- 13bW. Raimondi, O. Baslé, T. Constantieux, D. Bonne, J. Rodriguez, Adv. Synth. Catal. 2012, 354, 563–568;
- 13cW. Raimondi, M. Sanchez Duque, S. Goudedranche, A. Quintard, T. Constantieux, X. Bugaut, D. Bonne, J. Rodriguez, Synthesis 2013, 45, 1659–1666; α-aminations with azodicarboxylates:
- 13dM. Terada, K. Amagai, K. Ando, E. Kwon, H. Ube, Chem. Eur. J. 2011, 17, 9037–9041.
- 14
- 14aS. Diosdado, J. Etxabe, J. Izquierdo, A. Landa, A. Mielgo, I. Olaizola, R. López, C. Palomo, Angew. Chem. Int. Ed. 2013, 52, 11846–11851; Angew. Chem. 2013, 125, 12062–12067;
- 14bS. Diosdado, R. López, C. Palomo, Chem. Eur. J. 2014, 20, 6526–6531.
- 15For anti-aldol cross-reactions using lithium enolates of α-keto amides, see: E. R. Koft, P. Dorff, R. Kulling, J. Org. Chem. 1989, 54, 2936–2940.
- 16For detailed information on this subject, see:
- 16aR. Mahrwald in Modern Methods in Stereoselective Aldol Reactions, Wiley-VCH, Weinheim, 2013; For reviews on the topic, see:
10.1002/9783527656714 Google Scholar
- 16bS. G. Zlotin, A. S. Kucherenko, I. P. Beletskaya, Russ. Chem. Rev. 2009, 78, 737–784;
- 16cB. M. Trost, C. S. Brindle, Chem. Soc. Rev. 2010, 39, 1600–1632;
- 16dR. Mahrwald, Synlett 2011, 1660–1667;
- 16eM. Bhanushali, C.-G. Zhao, Synthesis 2011, 1815–1830;
- 16fM. M. Heravi, S. Asadi, Tetrahedron: Asymmetry 2012, 23, 1431–1465;
- 16gV. Bisai, A. Bisai, V. K. Singh, Tetrahedron 2012, 68, 4541–4580.
- 17For additions involving highly reactive carbonyl acceptors, see: ethyl trifluromethyl pyruvate:
- 17aS. Ogawa, N. Shibata, J. Inagaki, S. Nakamura, T. Toru, M. Shiro, Angew. Chem. Int. Ed. 2007, 46, 8666–8669; Angew. Chem. 2007, 119, 8820–8823; Isatins:
- 17bR. Guo, M. Bhanushali, C.-G. Zhao, Angew. Chem. Int. Ed. 2010, 49, 9460–9464; Angew. Chem. 2010, 122, 9650–9654;
- 17cS. Allu, N. Molleti, R. Panem, V. K. Singh, Tetrahedron Lett. 2011, 52, 4080–4083;
- 17dS. Konda, Q.-S. Guo, M. Abe, H. Huang, H. Arman, J. C.-G. Zhao, J. Org. Chem. 2015, 80, 806–815;
- 17eM. K. Vecchione, L. Li, D. Siedel, Chem. Commun. 2010, 46, 4604–4606;
- 17fref. 11; Formaldehyde:
- 17gX.-L. Liu, Y.-H. Liao, Z.-J. Wu, L.-F. Cun, X.-M. Zhang, W.-C. Yuan, J. Org. Chem. 2010, 75, 4872–4875; for other Brønsted-base-assisted aldol additions, see: addition of α-hydroxyketones: to chiral α-oxy aldehydes:
- 17hM. Markert, M. Mulzer, B. Schetter, R. Mahrwald, J. Am. Chem. Soc. 2007, 129, 7258–7259; to aromatic aldehydes (up to 47 % ee):
- 17iJ. Paradowska, M. Rogozinska, J. Mlynarski, Tetrahedron Lett. 2009, 50, 1639–1641; to aliphatic aldehydes (up to 78 % ee):
- 17jS. Baś, L. Woźniak, J. Cygan, J. Mlynarski, Eur. J. Org. Chem. 2013, 6917–6923; self-aldol couplings of α-oxyaldehydes (up to 80 %ee):
- 17kB. Gut, J. Mlynarski, Eur. J. Org. Chem. 2015, 5075–5078; Addition of 5H-oxazol-4-ones to aliphatic aldehydes (up to 97 % ee):
- 17lT. Misaki, G. Takimoto, T. Sugimura, J. Am. Chem. Soc. 2010, 132, 6286–6287; addition of α-alkyl azlactones to aliphatic aldehydes (up to 94 % ee):
- 17mY. Zheng, L. Deng, Chem. Sci. 2015, 6, 6510–6514; N-methylmorpholine catalyzed decarboxylative aldol reactions with chiral α-oxy aldehydes (up to 95 % de):
- 17nK. Rohr, R. Mahrwald, Org. Lett. 2011, 13, 1878–1880.
- 18For catalysts with multiple hydrogen-bond donors, see:
- 18aX. Fang, C.-J. Wang, Chem. Commun. 2015, 51, 1185–1197;
- 18bQ. Zhu, Y. Lu, Angew. Chem. Int. Ed. 2010, 49, 7753–7756; Angew. Chem. 2010, 122, 7919–7922;
- 18cC.-J. Wang, X.-A. Dong, Z. H. Zhong, Z. Y. Xue, H.-L. Teng, J. Am. Chem. Soc. 2008, 130, 8606–8607;
- 18dN. Li, W. Wu, F. Yu, H. Huang, X. Liang, J. Ye, Org. Biomol. Chem. 2011, 9, 2505–2511;
- 18eM.-Y. Zhao, W. H. Tang, M. Y. Chen, D.-K. Wei, T.-L. Dai, M. Shi, Eur. J. Org. Chem. 2011, 6078–6084;
- 18fB. Liu, X. Han, Z. Dong, H. Lv, H.-B. Zhou, C. Dong, Tetrahedron: Asymmetry 2013, 24, 1276–1280.
- 19We observed the aldol products 3B to be configurationally labile under silica gel column chromatography.
- 20CCDC 1434756 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. See the Supporting Information for details.
- 21For transition-state variants of reactions under proton-transfer conditions assisted by bifunctional urea(thiourea) Brønsted base catalysts, see: B. Kótai, G. Kardos, A. Hamza, V. Farkas, I. Pápai, T. Soós, Chem. Eur. J. 2014, 20, 5631–5639.
- 22The catalyst C2 produced 6 Ba with a 68:32 d.r. and 72 % ee . The catalyst C3 produced 6 Ba with a 76:24 d.r. and 80 % ee.
- 23For enamine aldol pathways to propargylic alcohols and further uses, see:
- 23aE. Gómez-Bengoa, J. M. García, S. Jiménez, I. Lapuerta, A. Mielgo, J. M. Odriozola, I. Otazo, J. Razkin, I. Urruzuni, S. Vera, M. Oiarbide, C. Palomo, Chem. Sci. 2013, 4, 3198–3204;
- 23bJ. M. García, J. M. Odriozola, J. Razkin, I. Lapuerta, A. Odriozola, I. Urruzuno, S. Vera, M. Oiarbide, C. Palomo, Chem. Eur. J. 2014, 20, 15543–15554;
- 23cY. Hayashi, M. Kojima, Y. Yasui, Y. Kanda, T. Mukaiyama, H. Shomura, D. Nakamura, D. Ritmaleni, I. Sato, ChemCatChem 2013, 5, 2887–2892.
- 24B. L. Stocker, E. M. Dangerfield, A. L. Win-Mason, G. W. Haslett, M. S. M. Timmer, Eur. J. Org. Chem. 2010, 1615–1637.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.