Regulating Molecular Recognition with C-Shaped Strips Attained by Chirality-Assisted Synthesis
Dr. Xiaoxi Liu
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Search for more papers by this authorZackariah J. Weinert
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Search for more papers by this authorMona Sharafi
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Search for more papers by this authorDr. Chenyi Liao
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Search for more papers by this authorCorresponding Author
Prof. Jianing Li
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)Search for more papers by this authorCorresponding Author
Prof. Severin T. Schneebeli
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)Search for more papers by this authorDr. Xiaoxi Liu
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Search for more papers by this authorZackariah J. Weinert
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Search for more papers by this authorMona Sharafi
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Search for more papers by this authorDr. Chenyi Liao
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Search for more papers by this authorCorresponding Author
Prof. Jianing Li
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)Search for more papers by this authorCorresponding Author
Prof. Severin T. Schneebeli
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)
Department of Chemistry, The University of Vermont, Burlington, VT 05405 (USA)Search for more papers by this authorAbstract
Chirality-assisted synthesis (CAS) is a general approach to control the shapes of large molecular strips. CAS is based on enantiomerically pure building blocks that are designed to strictly couple in a single geometric orientation. Fully shape-persistent structures can thus be created, even in the form of linear chains. With CAS, selective recognition between large host and guest molecules can reliably be designed de novo. To demonstrate this concept, three C-shaped strips that can embrace a pillar[5]arene macrocycle were synthesized. The pillar[5]arene bound to the strips was a better host for electron-deficient guests than the free macrocycle. Experimental and computational evidence is provided for these unique cooperative interactions to illustrate how CAS could open the door towards the precise positioning of functional groups for regulated supramolecular recognition and catalysis.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201506793_sm_MD_simulation.mpg20 MB | MD_simulation |
ange_201506793_sm_miscellaneous_information.pdf6.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. P. Mathias, J. F. Stoddart, Chem. Soc. Rev. 1992, 21, 215–225;
- 1bC. E. Schafmeister, Z. Z. Brown, S. Gupta, Acc. Chem. Res. 2008, 41, 1387–1398;
- 1cI. Saraogi, A. D. Hamilton, Chem. Soc. Rev. 2009, 38, 1726–1743;
- 1dB. V. Schmidt, N. Fechler, J. Falkenhagen, J. F. Lutz, Nat. Chem. 2011, 3, 234–238;
- 1eL. M. Johnson, D. E. Mortenson, H. G. Yun, W. S. Horne, T. J. Ketas, M. Lu, J. P. Moore, S. H. Gellman, J. Am. Chem. Soc. 2012, 134, 7317–7320;
- 1fP. Neuhaus, A. Cnossen, J. Q. Gong, L. M. Herz, H. L. Anderson, Angew. Chem. Int. Ed. 2015, 54, 7344–7348; Angew. Chem. 2015, 127, 7452–7456.
- 2
- 2aJ. Song, N. Aratani, H. Shinokubo, A. Osuka, J. Am. Chem. Soc. 2010, 132, 16356–16357;
- 2bT. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino, S. Yamago, Angew. Chem. Int. Ed. 2011, 50, 8342–8344; Angew. Chem. 2011, 123, 8492–8494;
- 2cV. Azzarito, K. Long, N. S. Murphy, A. J. Wilson, Nat. Chem. 2013, 5, 161–173;
- 2dA. V. Zabula, Y. V. Sevryugina, S. N. Spisak, L. Kobryn, R. Sygula, A. Sygula, M. A. Petrukhina, Chem. Commun. 2014, 50, 2657–2659;
- 2eP. Ballester, M. Fujita, J. Rebek, Jr., Chem. Soc. Rev. 2015, 44, 392–393;
- 2fM. Pelay-Gimeno, A. Glas, O. Koch, T. N. Grossmann, Angew. Chem. Int. Ed. 2015, 54, 8896–8927; Angew. Chem. 2015, 127, 9022–9054;
- 2gS. Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2015, 44, 419–432.
- 3
- 3aS. I. Stupp, L. C. Palmer, Chem. Mater. 2014, 26, 507–518;
- 3bS. Fujii, T. Tada, Y. Komoto, T. Osuga, T. Murase, M. Fujita, M. Kiguchi, J. Am. Chem. Soc. 2015, 137, 5939–5947;
- 3cJ. Kang, D. Miyajima, T. Mori, Y. Inoue, Y. Itoh, T. Aida, Science 2015, 347, 646–651;
- 3dM. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304–7397.
- 4
- 4aR. Breslow, Acc. Chem. Res. 1995, 28, 146–153;
- 4bH. Amouri, C. Desmarets, J. Moussa, Chem. Rev. 2012, 112, 2015–2041;
- 4cZ. Dong, Q. Luo, J. Liu, Chem. Soc. Rev. 2012, 41, 7890–7908;
- 4dH. Wei, E. Wang, Chem. Soc. Rev. 2013, 42, 6060–6093;
- 4eM. F. Parker, S. Osuna, G. Bollot, S. Vaddypally, M. J. Zdilla, K. N. Houk, C. E. Schafmeister, J. Am. Chem. Soc. 2014, 136, 3817–3827;
- 4fM. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen, Chem. Soc. Rev. 2014, 43, 1734–1787;
- 4gC. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012–3035.
- 5
- 5aK. Lou, A. M. Prior, B. Wiredu, J. Desper, D. H. Hua, J. Am. Chem. Soc. 2010, 132, 17635–17641;
- 5bC. F. Chen, Chem. Commun. 2011, 47, 1674–1688;
- 5cB. Kohl, F. Rominger, M. Mastalerz, Org. Lett. 2014, 16, 704–707.
- 6
- 6aM. Kirsch, P. Talbiersky, J. Polkowska, F. Bastkowski, T. Schaller, H. de Groot, F. G. Klärner, T. Schrader, Angew. Chem. Int. Ed. 2009, 48, 2886–2890; Angew. Chem. 2009, 121, 2930–2934;
- 6bS. Norrehed, H. Johansson, H. Grennberg, A. Gogoll, Chem. Eur. J. 2013, 19, 14631–14638;
- 6cY. Cotelle, M. Allain, S. Legoupy, P. Hudhomme, Org. Lett. 2014, 16, 2590–2593.
- 7
- 7aP. Talbiersky, F. Bastkowski, F. G. Klärner, T. Schrader, J. Am. Chem. Soc. 2008, 130, 9824–9828;
- 7bJ. Cao, X. Z. Zhu, C. F. Chen, J. Org. Chem. 2010, 75, 7420–7423;
- 7cD. Bier, R. Rose, K. Bravo-Rodriguez, M. Bartel, J. M. Ramirez-Anguita, S. Dutt, C. Wilch, F. G. Klärner, E. Sanchez-Garcia, T. Schrader, C. Ottmann, Nat. Chem. 2013, 5, 234–239.
- 8
- 8aF. G. Klärner, B. Kahlert, Acc. Chem. Res. 2003, 36, 919–932;
- 8bK. Tahara, Y. Tobe, Chem. Rev. 2006, 106, 5274–5290;
- 8cR. Gleiter, B. Esser, S. C. Kornmayer, Acc. Chem. Res. 2009, 42, 1108–1116;
- 8dM. Hardouin-Lerouge, P. Hudhomme, M. Salle, Chem. Soc. Rev. 2011, 40, 30–43.
- 9M. D. Johnstone, E. K. Schwarze, G. H. Clever, F. M. Pfeffer, Chem. Eur. J. 2015, 21, 3948–3955.
- 10
- 10aJ. H. Chong, M. J. MacLachlan, J. Org. Chem. 2007, 72, 8683–8690;
- 10bJ. H. Chong, S. J. Ardakani, K. J. Smith, M. J. MacLachlan, Chem. Eur. J. 2009, 15, 11824–11828.
- 11T. Ogoshi, S. Kanai, S. Fujinami, T.-a. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 2008, 130, 5022–5023.
- 12
- 12aP. J. Cragg, K. Sharma, Chem. Soc. Rev. 2012, 41, 597–607;
- 12bM. Xue, Y. Yang, X. Chi, Z. Zhang, F. Huang, Acc. Chem. Res. 2012, 45, 1294–1308;
- 12cN. L. Strutt, H. Zhang, S. T. Schneebeli, J. F. Stoddart, Acc. Chem. Res. 2014, 47, 2631–2642;
- 12dD. Cao, H. Meier, Synthesis 2015, 1041–1056.
- 13J.-L. Ripoll, Bull. Soc. Chim. Fr. 1974, 11, 2567–2571.
- 14The absolute configuration of (S,S)-1 was assigned by comparing experimental and calculated (B3LYP/6-31G*) vibrational circular dichroism spectra (see the Supporting Information).
- 15The enantiomeric excess (ee) was determined by HPLC chromatography on a chiral stationary phase.
- 16
- 16aJ. D. Winkler, B. M. Twenter, T. Gendrineau, Heterocycles 2012, 84, 1345–1353;
- 16bD. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura, S. L. Buchwald, Chem. Sci. 2011, 2, 57–68.
- 17Although this initial protection step resulted in a statistical mixture of 1) starting material 1 (19 %), 2) mono-Boc-protected N-Boc-1 (54 %), and 3) the di-Boc-protected analogue N,N-diBoc-1 (27 %), simple, high-yielding deprotection and recycling of the N,N-diBoc-1 side product further increased the overall yield of N-Boc-1 to 79 %.
- 18
- 18aT. Ogoshi, K. Kida, T. A. Yamagishi, J. Am. Chem. Soc. 2012, 134, 20146–20150;
- 18bT. Ogoshi, R. Shiga, T.-a. Yamagishi, J. Am. Chem. Soc. 2012, 134, 4577–4580;
- 18cT. Ogoshi, T. Akutsu, D. Yamafuji, T. Aoki, T.-a. Yamagishi, Angew. Chem. Int. Ed. 2013, 52, 8111–8115; Angew. Chem. 2013, 125, 8269–8273;
- 18dZ. Y. Li, Y. Zhang, C. W. Zhang, L. J. Chen, C. Wang, H. Tan, Y. Yu, X. Li, H. B. Yang, J. Am. Chem. Soc. 2014, 136, 8577–8589;
- 18eT. Ogoshi, R. Sueto, K. Yoshikoshi, Y. Sakata, S. Akine, T. A. Yamagishi, Angew. Chem. Int. Ed. 2015, 54, 9849–9852; Angew. Chem. 2015, 127, 9987–9990;
- 18fT. Ogoshi, K. Yoshikoshi, R. Sueto, H. Nishihara, T. A. Yamagishi, Angew. Chem. Int. Ed. 2015, 54, 6466–6469; Angew. Chem. 2015, 127, 6566–6569.
- 19
- 19aY. Chang, K. Yang, P. Wei, S. Huang, Y. Pei, W. Zhao, Z. Pei, Angew. Chem. Int. Ed. 2014, 53, 13126–13130; Angew. Chem. 2014, 126, 13342–13346;
- 19bX. Ma, Y. Zhao, Chem. Rev. 2015, 115, 7794–7839.
- 20As 7 was present as a single enantiomer and P[5] as a racemic mixture of interconverting enantiomers (see: N. L. Strutt, S. T. Schneebeli, J. F. Stoddart, Supramol. Chem. 2013, 25, 596–608), two diastereoisomeric complexes with distinct chemical shifts, namely (SP ,SP ,SP ,SP ,SP)-P[5]@7 and (RP ,RP ,RP ,RP ,RP)-P[5]@7, were likely formed in this case. Integration of the corresponding 1H NMR resonances indicated that both diastereoisomeric complexes were present in approximately equal amounts. Therefore, no significant induction of planar chirality was observed for P[5] upon complexation with the chiral strips.
- 21When titrating N,N′-diBoc-1 into a CD3CN/D2O solution (5:1, v/v) of P[5], no detectable changes in the 1H NMR chemical shifts were observed, neither for the proton resonances of P[5], nor for the ones of N,N′-diBoc-1. Consequently, this result rules out the possibility that the Boc protecting groups of strips 4 and 7 are simply binding to the cavity of P[5].
- 22The aromatic 1H NMR resonances of pillararenes generally shift downfield upon binding to viologens (see Ref. [18b]). Our results are consistent with this trend given the fitted (see the Supporting Information) aromatic P[5] proton resonances of 6.15±0.01 ppm for P[5]@4, 6.24±0.04 ppm for VBr-1@P[5]@4, 3.90±0.02 ppm for P[5]@7, as well as 6.53±0.03 ppm for VBr-1@P[5]@7. The apparent upfield shift of the resonances of the aromatic P[5] protons in the presence of 4 (Figure 3) is simply caused by the positive cooperativity, which leads to an increased fraction of P[5] bound to 4 upon addition of VBr-1.
- 23We observed an association constant for the VBr-1@P[5] complex of ca. 200 M−1 in CD3CN/D2O (5:1, v/v). This value is lower than what has been reported previously for the same complex in pure water (see Ref. [18b]), indicating that hydrophobic effects might be a significant driving force for the binding of VBr-1 to P[5].
- 24To 1) confirm that VBr-1 is indeed binding inside the cavity of P[5] in the ternary complexes and 2) rule out significant changes in the P[5]@4 and P[5]@7 association constants caused by changes in salt concentration, we also titrated sterically hindered bis(3,5-dimethylbenzyl)viologen dibromide (VBr-2) into a solution of P[5]@4 in CD3CN/D2O (5:1, v/v). Consistent with our hypothesis, no changes in the 1H NMR chemical shifts were observed (see the Supporting Information) for these negative control experiments, as the 3,5-dimethylbenzyl substituents of VBr-2 are too large to allow for the sliding of VBr-2 into the cavity of P[5].
- 25T. Kawase, K. Tanaka, N. Shiono, Y. Seirai, M. Oda, Angew. Chem. Int. Ed. 2004, 43, 1722–1724; Angew. Chem. 2004, 116, 1754–1756.
- 26Whereas the physical reasons for these observations are still under investigation, the positive cooperativity could be of an entropic nature; binding of the clips to the outside of a pillararene likely rigidifies the macrocycle, which would reduce the loss of entropy upon complexation with viologen.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.