The Triple-Bond Metathesis of Aryldiazonium Salts: A Prospect for Dinitrogen Cleavage
Dr. Aaron D. Lackner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Search for more papers by this authorCorresponding Author
Prof. Alois Fürstner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)Search for more papers by this authorDr. Aaron D. Lackner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Search for more papers by this authorCorresponding Author
Prof. Alois Fürstner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)Search for more papers by this authorAbstract
The {N2} unit of aryldiazonium salts undergoes unusually facile triple-bond metathesis on treatment with molybdenum or tungsten alkylidyne ate complexes endowed with triphenylsilanolate ligands. The reaction transforms the alkylidyne unit into a nitrile and the aryldiazonium entity into an imido ligand on the metal center, as unambiguously confirmed by X-ray structure analysis of two representative examples. A tungsten nitride ate complex is shown to react analogously. Since the bonding situation of an aryldiazonium salt is similar to that of metal complexes with end-on-bound dinitrogen, in which {N2}→M σ donation is dominant and electron back donation minimal, the metathesis described herein is thought to be a conceptually novel strategy toward dinitrogen cleavage devoid of any redox steps and, therefore, orthogonal to the established methods.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201506546_sm_miscellaneous_information.pdf5.9 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a The Chemistry of Diazonium and Diazo Groups, pt. 1–2 (Ed.: ), Wiley, Chichester, 1978;
- 1bK. H. Saunders, R. L. M. Allen, Aromatic Diazo Compounds, 3rd ed., Edward Arnold, London, 1985.
- 2F. Mo, G. Dong, Y. Zhang, J. Wang, Org. Biomol. Chem. 2013, 11, 1582–1593.
- 3Depending on the very nature of the delivered N substituent, the resulting azo compound will either lose N2 or can be indefinitely stable.
- 4A. Roglans, A. Pla-Quintana, M. Moreno-Mañas, Chem. Rev. 2006, 106, 4622–4643.
- 5C. Galli, Chem. Rev. 1988, 88, 765–792.
- 6
- 6aD. Sutton, Chem. Rev. 1993, 93, 995–1022;
- 6bR. B. King, J. Organomet. Chem. 1995, 500, 187–195.
- 7R. R. Schrock, Angew. Chem. Int. Ed. 2006, 45, 3748–3759; Angew. Chem. 2006, 118, 3832–3844.
- 8
- 8aR. R. Schrock, Chem. Rev. 2002, 102, 145–179;
- 8bR. R. Schrock, J. Chem. Soc. Dalton Trans. 2001, 2541–2550.
- 9For the formation of some remotely related carbenes on reaction of tungsten alkylidyne ate complexes carrying calixarene ligands with electrophiles such as COCl2, I2, Ph3SnCl, or R2PCl, see S. Dovesi, E. Solari, R. Scopelliti, C. Floriani, Angew. Chem. Int. Ed. 1999, 38, 2388–2391;
10.1002/(SICI)1521-3773(19990816)38:16<2388::AID-ANIE2388>3.0.CO;2-G CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 2545–2547.10.1002/(SICI)1521-3757(19990816)111:16<2545::AID-ANGE2545>3.0.CO;2-4 Web of Science® Google Scholar
- 10T. J. Katz, J. McGinnis, J. Am. Chem. Soc. 1975, 97, 1592–1594.
- 11aJ. H. Wengrovius, J. Sancho, R. R. Schrock, J. Am. Chem. Soc. 1981, 103, 3932–3934;
- 11bS. F. Pedersen, R. R. Schrock, M. R. Churchill, H. J. Wasserman, J. Am. Chem. Soc. 1982, 104, 6808–6809.
- 12A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 2794–2819; Angew. Chem. 2013, 125, 2860–2887.
- 13J. Heppekausen, R. Stade, R. Goddard, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 11045–11057.
- 14J. Heppekausen, R. Stade, A. Kondoh, G. Seidel, R. Goddard, A. Fürstner, Chem. Eur. J. 2012, 18, 10281–10299.
- 15
- 15aV. Hickmann, A. Kondoh, B. Gabor, M. Alcarazo, A. Fürstner, J. Am. Chem. Soc. 2011, 133, 13471–13480;
- 15bK. Micoine, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 14064–14066;
- 15cW. Chaładaj, M. Corbet, A. Fürstner, Angew. Chem. Int. Ed. 2012, 51, 6929–6933; Angew. Chem. 2012, 124, 7035–7039;
- 15dS. Benson, M.-P. Collin, A. Arlt, B. Gabor, R. Goddard, A. Fürstner, Angew. Chem. Int. Ed. 2011, 50, 8739–8744; Angew. Chem. 2011, 123, 8898–8903;
- 15eL. Brewitz, J. Llaveria, A. Yada, A. Fürstner, Chem. Eur. J. 2013, 19, 4532–4537;
- 15fS. M. Rummelt, J. Preindl, H. Sommer, A. Fürstner, Angew. Chem. Int. Ed. 2015, 54, 6241–6245; Angew. Chem. 2015, 127, 6339–6343.
- 16
- 16aA. M. Geyer, E. S. Wiedner, J. B. Gary, R. L. Gdula, N. C. Kuhlmann, M. J. A. Johnson, B. D. Dunietz, J. W. Kampf, J. Am. Chem. Soc. 2008, 130, 8984–8999;
- 16bR. L. Gdula, M. J. A. Johnson, J. Am. Chem. Soc. 2006, 128, 9614–9615.
- 17In line with the metathetic course of the reaction, 1-(4-methoxyphenyl)but-1-yne and 4,4′-dimethoxytolane were detected by GC-MS.
- 18For analogous Mo-nitride complexes, see Refs. [13, 14] and the following: M. Bindl, R. Stade, E. K. Heilmann, A. Picot, R. Goddard, A. Fürstner, J. Am. Chem. Soc. 2009, 131, 9468–9470.
- 19For example, the WC bond in [(tBuO)3WCPh]) is 1.758(5) Å, see F. A. Cotton, W. Schwotzer, E. S. Shamshoum, Organometallics 1984, 3, 1770–1771.
- 20We used terminally 15N-labeled (2-phenyl)phenyldiazonium tetrafluoroborate in preliminary attempts to characterize a pertinent intermediate by spectroscopic means, as this substrate reacts somewhat more slowly. A carbon signal at δC=252.2 ppm with a distinctive J(13C,15N) coupling constant of 6 Hz was detected, which we tentatively ascribe to a Fischer-carbene intermediate of type B.
- 21Products from ligand decomposition are also observed.
- 22The typical bond length of an Ar-CN group is 1.138 Å, see F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2 1987, S 1–S19.
- 23These metrics are comparable to the WN bond length (1.772(22) Å) and the WN-Ar bond angle (169.5(19)°) in [(iPrO)4WNPh], see J. T. Barry, M. H. Chisholm, K. Folting, J. C. Huffman, W. E. Streib, Polyhedron 1997, 16, 2113–2133.
- 24Inspection of the crude material by GC-MS and IR suggest that small amounts of (tert-butyl)phenylazide are also present; studies into this interesting side reaction are underway.
- 25
- 25aP. Persich, J. Llaveria, R. Lhermet, T. de Haro, R. Stade, A. Kondoh, A. Fürstner, Chem. Eur. J. 2013, 19, 13047–13058;
- 25bR. Lhermet, A. Fürstner, Chem. Eur. J. 2014, 20, 13188–13193.
- 26aC. M. Neuhaus, M. Liniger, M. Stieger, K.-H. Altmann, Angew. Chem. Int. Ed. 2013, 52, 5866–5870; Angew. Chem. 2013, 125, 5978–5983;
- 26bK. J. Ralston, H. C. Ramstadius, R. C. Brewster, H. S. Niblock, A. H. Hulme, Angew. Chem. Int. Ed. 2015, 54, 7086–7090; Angew. Chem. 2015, 127, 7192–7196.
- 27
- 27aJ. Willwacher, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 4217–4221; Angew. Chem. 2014, 126, 4301–4305;
- 27bK. Gebauer, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 6393–6396; Angew. Chem. 2014, 126, 6511–6514;
- 27cG. Valot, C. S. Regens, D. P. O′Malley, E. Godineau, H. Takikawa, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 9534–9538; Angew. Chem. 2013, 125, 9713–9717;
- 27dK. Lehr, R. Mariz, L. Leseurre, B. Gabor, A. Fürstner, Angew. Chem. Int. Ed. 2011, 50, 11373–11377; Angew. Chem. 2011, 123, 11575–11579;
- 27eL. Hoffmeister, P. Persich, A. Fürstner, Chem. Eur. J. 2014, 20, 4396–4402;
- 27fL. Hoffmeister, T. Fukuda, G. Pototschnig, A. Fürstner, Chem. Eur. J. 2015, 21, 4529–4533;
- 27gF. Ungeheuer, A. Fürstner, Chem. Eur. J. 2015, 21, 11387–11392.
- 28
- 28aR. R. Schrock, Chem. Commun. 2013, 49, 5529–5531;
- 28bW. Zhang, J. S. Moore, Adv. Synth. Catal. 2007, 349, 93–120;
- 28cH. Yang, Y. Jin, Y. Du, W. Zhang, J. Mater. Chem. A 2014, 2, 5986–5993;
- 28dA. Fürstner, P. W. Davies, Chem. Commun. 2005, 2307–2320;
- 28eC. Deraedt, M. d’Halluin, D. Astruc, Eur. J. Inorg. Chem. 2013, 4881–4908;
- 28fS. Shahane, C. Bruneau, C. Fischmeister, ChemCatChem 2013, 5, 3436–3459.
- 29Ref. [13] provides a single example of an alkyne metathesis carried out at −10 °C.
- 30
- 30aR. Glaser, C. J. Horan, H. Zollinger, Angew. Chem. Int. Ed. Engl. 1997, 36, 2210–2213; Angew. Chem. 1997, 109, 2324–2328;
- 30bR. Glaser, C. J. Horan, J. Org. Chem. 1995, 60, 7518–7528.
- 31Analysis of the frontier orbitals of PhN2+ indicates significant σ donation from {N2} into the formal {Ph}+ fragment, thereby giving rise to a low-lying bonding orbital (E=−0.493 eV); all other occupied frontier orbitals show antibonding interactions between these units, thus implying little back donation from the aromatic π cloud to the N2 group. The LUMO has the largest lobes at the CN bond, which explains why nucleophiles or electron donors able to interact with this orbital will readily extrude N2.
- 32J. Chatt, J. R. Dilworth, R. L. Richards, Chem. Rev. 1978, 78, 589–625.
- 33F. Studt, F. Tuczek, J. Comput. Chem. 2006, 27, 1278–1291.
- 34The fact that aryldiazonium ions undergo facile Nα/Nβ rearrangement through in situ release and trapping of N2 by the concomitantly formed Ar+ corroborates the analogy to end-on-bound {N2} complexes, see
- 34aE. S. Lewis, R. E. Holliday, J. Am. Chem. Soc. 1969, 91, 426–430;
- 34bI. Szele, H. Zollinger, J. Am. Chem. Soc. 1978, 100, 2811–2815.
- 35For pioneering studies showing successful attack of an organometallic reagent onto end-on-coordinated nitrogen complexes, see
- 35aD. Sellmann, W. Weiss, Angew. Chem. Int. Ed. Engl. 1977, 16, 880–881; Angew. Chem. 1977, 89, 918–919;
- 35bD. Sellmann, W. Weiss, Angew. Chem. Int. Ed. Engl. 1978, 17, 269–270; Angew. Chem. 1978, 90, 295–296;
- 35cD. Sellmann, W. Weiss, J. Organomet. Chem. 1978, 160, 183–196.
- 36Even a catalytic scenario is a priori not excluded, although certainly difficult to realize. Arylimido ligands afford dichloro complexes on protonation, which open a way back to an alkylidyne; for leading references on replacement of imido ligands, see
- 36aR. R. Schrock, I. A. Weinstock, A. D. Horton, A. H. Liu, M. H. Schofield, J. Am. Chem. Soc. 1988, 110, 2686–2687;
- 36bR. R. Schrock, R. T. DePue, J. Feldman, K. B. Yap, D. C. Yang, W. M. Davis, L. Park, M. DiMare, M. Schofield, J. Anhaus, E. Walborsky, E. Evitt, C. Krüger, P. Betz, Organometallics 1990, 9, 2262–2275.
- 37
- 37aH.-P. Jia, E. A. Quadrelli, Chem. Soc. Rev. 2014, 43, 547–564;
- 37bK. C. MacLeod, P. L. Holland, Nat. Chem. 2013, 5, 559–565;
- 37cG. Ertl, Angew. Chem. Int. Ed. 2008, 47, 3524–3535; Angew. Chem. 2008, 120, 3578–3590;
- 37dR. R. Schrock, Acc. Chem. Res. 2005, 38, 955–962;
- 37eM. P. Shaver, M. D. Fryzuk, Adv. Synth. Catal. 2003, 345, 1061–1076;
- 37fM. Hidai, Coord. Chem. Rev. 1999, 185–186, 99–108.
- 38For a discussion, see M. Mori, J. Organomet. Chem. 2004, 689, 4210–4227.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.