Highly Regioselective Radical Amination of Allenes: Direct Synthesis of Allenamides and Tetrasubstituted Alkenes
Ge Zhang
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
These authors contributed equally to this work.
Search for more papers by this authorProf. Tao Xiong
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
These authors contributed equally to this work.
Search for more papers by this authorZining Wang
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
Search for more papers by this authorGuoxing Xu
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
Search for more papers by this authorXuedan Wang
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
Search for more papers by this authorCorresponding Author
Prof. Qian Zhang
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)Search for more papers by this authorGe Zhang
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
These authors contributed equally to this work.
Search for more papers by this authorProf. Tao Xiong
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
These authors contributed equally to this work.
Search for more papers by this authorZining Wang
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
Search for more papers by this authorGuoxing Xu
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
Search for more papers by this authorXuedan Wang
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
Search for more papers by this authorCorresponding Author
Prof. Qian Zhang
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)
Department of Chemistry, Northeast Normal University, Changchun, 130024 (China)Search for more papers by this authorAbstract
The first controllable, regioselective radical amination of allenes with N-fluoroarylsulfonimide is described to proceed under very mild reaction conditions. With this methodology, a general and straightforward route for the synthesis of both allenamides and fluorinated tetrasubstituted alkenes was realized from a wide range of terminal and internal allenes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201506066_sm_miscellaneous_information.pdf17.3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Lu, Z. Lu, Z.-X. Ma, Y. Zhang, R. P. Hsung, Chem. Rev. 2013, 113, 4862–4904;
- 1bL.-l. Wei, H. Xiong, R. P. Hsung, Acc. Chem. Res. 2003, 36, 773–782;
- 1cA. Navarro-Vázquez, D. Rodríguez, M. F. Martínez-Esperón, A. García, C. Saá, D. Domínguez, Tetrahedron Lett. 2007, 48, 2741–2743;
- 1dJ. E. Antoline, R. P. Hsung, J. Huang, Z. Song, G. Li, Org. Lett. 2007, 9, 1275–1278;
- 1eZ. Song, R. P. Hsung, Org. Lett. 2007, 9, 2199–2202;
- 1fZ. Song, R. P. Hsung, T. Lu, A. G. Lohse, J. Org. Chem. 2007, 72, 9722–9731;
- 1gR. Hayashi, Z.-X. Ma, R. P. Hsung, Org. Lett. 2012, 14, 252–255.
- 2
- 2aA. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 2004, 43, 1196–1216; Angew. Chem. 2004, 116, 1216–1236;
- 2bS. Hayashi, S. Phadtare, J. Zemlicka, M. Matsukura, H. Mitsuya, S. Broder, Proc. Natl. Acad. Sci. USA 1988, 85, 6127–6131;
- 2cS. Phadtare, J. Zemlicka, J. Am. Chem. Soc. 1989, 111, 5925–5931;
- 2dS. Phadtare, D. Kessel, T. H. Corbett, H. E. Renis, B. E. Court, J. Zemlicka, J. Med. Chem. 1991, 34, 421–429;
- 2eB. C. N. M. Jones, J. V. Silverton, C. Simons, S. Megati, H. Nishimura, Y. Maeda, H. Mitsuya, J. Zemlicka, J. Med. Chem. 1995, 38, 1397–1405;
- 2fS. Megati, Z. Goren, J. V. Silverton, J. Orlina, H. Nishimura, T. Shirasaki, H. Mitsuya, J. Zemlicka, J. Med. Chem. 1992, 35, 4098–4104.
- 3
- 3aW. B. Dickinson, P. C. Lang, Tetrahedron Lett. 1967, 8, 3035–3040;
10.1016/S0040-4039(00)90910-9 Google Scholar
- 3bA. Padwa, T. Caruso, S. Nahm, A. Rodriguez, J. Am. Chem. Soc. 1982, 104, 2865–2871;
- 3cI. Fenández, M. I. Monterde, J. Plumet, Tetrahedron Lett. 2005, 46, 6029–6031;
- 3dD. R. Garud, H. Ando, Y. Kawai, H. Ishihara, M. Koketsu, Org. Lett. 2007, 9, 4455–4458;
- 3eL. J. van Boxtel, S. Körbe, M. Noltemeyer, A. de Meijere, Eur. J. Org. Chem. 2001, 2283–2292;
- 3fJ. Huang, H. Xiong, R. P. Hsung, C. Rameshkumar, J. A. Mulder, T. P. Grebe, Org. Lett. 2002, 4, 2417–2420.
- 4
- 4aK. K. Balasubramanian, B. Venugopalan, Tetrahedron Lett. 1974, 15, 2643–2644;
10.1016/S0040-4039(01)92315-9 Google Scholar
- 4bK. K. Balasubramanian, B. Venugopalan, Tetrahedron Lett. 1974, 15, 2645–2648;
10.1016/S0040-4039(01)92316-0 Google Scholar
- 4cL. E. Overman, L. A. Clizbe, R. L. Freerks, C. K. Marlowe, J. Am. Chem. Soc. 1981, 103, 2807–2815;
- 4dN. A. Romero, B. M. Klepser, C. E. Anderson, Org. Lett. 2012, 14, 874–877;
- 4eA. M. Danowitz, C. E. Taylor, T. M. Shrikian, A. K. Mapp, Org. Lett. 2010, 12, 2574–2577;
- 4fG. Yin, Y. Zhu, L. Zhang, P. Lu, Y. Wang, Org. Lett. 2011, 13, 940–943.
- 5
- 5aH. Tanaka, Y. Kameyama, S.-i. Sumida, T. Yamada, Y. Tokumaru, T. Shiroi, M. Sasaoka, M. Taniguchi, S. Torii, Synlett 1991, 888–890;
- 5bV. Farina, J. Kant, Tetrahedron Lett. 1992, 33, 3559–3562;
- 5cM. D. Clay, A. G. Fallis, Angew. Chem. Int. Ed. 2005, 44, 4039–4042; Angew. Chem. 2005, 117, 4107–4110;
- 5dI. T. Crouch, R. K. Neff, D. E. Frantz, J. Am. Chem. Soc. 2013, 135, 4970–4973.
- 6
- 6aM. Kimura, Y. Wakamiya, Y. Horino, Y. Tamaru, Tetrahedron Lett. 1997, 38, 3963–3966;
- 6bY. Kozawa, M. Mori, Tetrahedron Lett. 2001, 42, 4869–4873;
- 6cY. Kozawa, M. Mori, Tetrahedron Lett. 2002, 43, 1499–1502.
- 7
- 7aB. M. Trost, D. T. Stiles, Org. Lett. 2005, 7, 2117–2120;
- 7bL. Shen, R. P. Hsung, Y. Zhang, J. E. Antoline, X. Zhang, Org. Lett. 2005, 7, 3081–3084;
- 7cY. Tang, L. Shen, B. J. Dellaria, R. P. Hsung, Tetrahedron Lett. 2008, 49, 6404–6409;
- 7dA. K. Å. Persson, E. V. Johnston, J.-E. Bäckvall, Org. Lett. 2009, 11, 3814–3817.
- 8
- 8aF. Collet, R. H. Dodd, P. Dauban, Chem. Commun. 2009, 5061–5074;
- 8bT. A. Ramirez, B. Zhao, Y. Shi, Chem. Soc. Rev. 2012, 41, 931–942;
- 8cF. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926–1936;
- 8dR. T. Gephart, T. H. Warren, Organometallics 2012, 31, 7728–7752;
- 8eM.-L. Louillat, F. W. Patureau, Chem. Soc. Rev. 2014, 43, 901–910.
- 9
- 9aR. Zimmer, C. U. Dinesh, E. Nandanan, F. A. Khan, Chem. Rev. 2000, 100, 3067–3126;
- 9bS. Ma, Chem. Rev. 2005, 105, 2829–2872;
- 9cM. Brasholz, H.-U. Reissig, R. Zimmer, Acc. Chem. Res. 2009, 42, 45–56;
- 9dS. Ma, Acc. Chem. Res. 2009, 42, 1679–1688;
- 9eB. Alcaide, P. Almendros, Adv. Synth. Catal. 2011, 353, 2561–2576;
- 9fN. Krause, C. Winter, Chem. Rev. 2011, 111, 1994–2009;
- 9gS. Yu, S. Ma, Chem. Commun. 2011, 47, 5384–5418;
- 9hS. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074–3112; Angew. Chem. 2012, 124, 3128–3167;
- 9iW. Yang, A. S. K. Hashmi, Chem. Soc. Rev. 2014, 43, 2941–2955;
- 9jM. P. Muñoz, Chem. Soc. Rev. 2014, 43, 3164–3183;
- 9kC. Aubert, L. Fensterbank, P. Garcia, M. Malacria, A. Simonneau, Chem. Rev. 2011, 111, 1954–1993;
- 9lC. S. Adams, C. D. Weatherly, E. G. Burke, J. M. Schomaker, Chem. Soc. Rev. 2014, 43, 3136–3163;
- 9mM. A. Tius, Chem. Soc. Rev. 2014, 43, 2979–3002;
- 9nS. Kitagaki, F. Inagaki, C. Mukai, Chem. Soc. Rev. 2014, 43, 2956–2978;
- 9oZ. Wang, X. Xu, O. Kwon, Chem. Soc. Rev. 2014, 43, 2927–2940;
- 9pT. Cañeque, F. M. Truscott, R. Rodriguez, G. Maestri, M. Malacria, Chem. Soc. Rev. 2014, 43, 2916–2926;
- 9qJ. Ye, S. Ma, Acc. Chem. Res. 2014, 47, 989–1000;
- 9rJ. Ye, S. Ma, Org. Chem. Front. 2014, 1, 1210–1224.
- 10
- 10aR. Zeng, S. Wu, C. Fu, S. Ma, J. Am. Chem. Soc. 2013, 135, 18284–18287.
- 11F. Pan, C. Fu, S. Ma, Chin. J. Org. Chem. 2004, 10, 1168–1190.
- 12
- 12aG. Zheng, Y. Li, J. Han, T. Xiong, Q. Zhang, Nat. Commun. 2015, 6, 7011, DOI: 10.1038/ncomms8011;
- 12bH. Zhang, W. Pu, T. Xiong, Y. Li, X. Zhou, K. Sun, Q. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2013, 52, 2529–2533; Angew. Chem. 2013, 125, 2589–2593;
- 12cH. Zhang, Y. Song, J. Zhao, J. Zhang, Q. Zhang, Angew. Chem. Int. Ed. 2014, 53, 11079–11083; Angew. Chem. 2014, 126, 11259–11263.
- 13
- 13aK. Kaneko, T. Yoshino, S. Matsunaga, M. Kanai, Org. Lett. 2013, 15, 2502–2505;
- 13bB. Zhang, A. Studer, Org. Lett. 2014, 16, 1790–1793; for a palladium-catalyzed imidation of arenes with NFSI by a nitrogen radical pathway, see:
- 13cG. B. Boursalian, M.-Y. Ngai, K. N. Hojczyk, T. Ritter, J. Am. Chem. Soc. 2013, 135, 13278–13281.
- 14A. I. O. Suarez, V. Lyaskovskyy, J. N. H. Reek, J. I. van der Vlugt, B. de Bruin, Angew. Chem. Int. Ed. 2013, 52, 12510–12529; Angew. Chem. 2013, 125, 12740–12760.
- 15Y.-J. Liu, H. Xu, W.-J. Kong, M. Shang, H.-X. Dai, J.-Q. Yu, Nature 2014, 515, 389–393.
- 16
- 16aK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 16bS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330;
- 16cP. Jeschke, ChemBioChem 2004, 5, 570–589;
- 16dS. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev. 2008, 108, 1501–1516.
- 17K. K. J. Chan, D. O’Hagan, Methods Enzymol. 2012, 516, 219–235.
- 18For general reviews on the synthesis of organofluorine compounds, see:
- 18aM. Shimizu, T. Hiyama, Angew. Chem. Int. Ed. 2005, 44, 214–231; Angew. Chem. 2005, 117, 218–234;
- 18b“Flourishing Frontiers in Organofluorine Chemistry”: Organic Chemistry—Breakthroughs and Perspectives (Eds.: ) Wiley-VCH, Weiheim, 2012;
- 18cT. Liang, C. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214–8264; Angew. Chem. 2013, 125, 8372–8423;
- 18dM. G. Campbell, T. Ritter, Chem. Rev. 2015, 115, 612–633;
- 18eP. A. Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin, Chem. Rev. 2015, DOI: 10.1021/cr500706a.
- 19
- 19aF. Yin, Z. Wang, Z. Li, C. Li, J. Am. Chem. Soc. 2012, 134, 10401–10404;
- 19bC. Zhang, Z. Li, L. Zhu, L. Yu, Z. Wang, C. Li, J. Am. Chem. Soc. 2013, 135, 14082–14085;
- 19cZ. Li, L. Song, C. Li, J. Am. Chem. Soc. 2013, 135, 4640–4643;
- 19dZ. Li, Z. Wang, L. Zhu, X. Tan, C. Li, J. Am. Chem. Soc. 2014, 136, 16439–16443. For an intramolecular aminofluorination of activated allenes by a AgII-F reductive elimination mechanism, see:
- 19eT. Xu, X. Mu, H. Peng, G. Liu, Angew. Chem. Int. Ed. 2011, 50, 8176–8179; Angew. Chem. 2011, 123, 8326–8329;
- 19fFor a palladium-catalyzed fluorination of arylboronic acid derivatives with selectfluor by fluorine-atom transfer, see: A. R. Mazzotti, M. G. Campbell, P. Tang, J. M. Murphy, T. Ritter, J. Am. Chem. Soc. 2013, 135, 14012–14015.
- 20C. L. Bumgardner, K. G. McDaniel, J. Am. Chem. Soc. 1969, 91, 1032–1034.
- 21A. B. Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107, 4698–4745.
- 22See the Supporting Information for details.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.