Excited-State Dynamic Planarization of Cyclic Oligothiophenes in the Vicinity of a Ring-to-Linear Excitonic Behavioral Turning Point
Kyu Hyung Park
Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorDr. Pyosang Kim
Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorWoojae Kim
Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorDr. Hideyuki Shimizu
Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Search for more papers by this authorDr. Minwoo Han
Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Eunji Sim
Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Eunji Sim, Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Masahiko Iyoda, Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Dongho Kim, Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Masahiko Iyoda
Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Eunji Sim, Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Masahiko Iyoda, Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Dongho Kim, Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dongho Kim
Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Eunji Sim, Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Masahiko Iyoda, Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Dongho Kim, Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorKyu Hyung Park
Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorDr. Pyosang Kim
Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorWoojae Kim
Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorDr. Hideyuki Shimizu
Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Search for more papers by this authorDr. Minwoo Han
Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Eunji Sim
Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Eunji Sim, Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Masahiko Iyoda, Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Dongho Kim, Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Masahiko Iyoda
Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Eunji Sim, Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Masahiko Iyoda, Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Dongho Kim, Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dongho Kim
Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Eunji Sim, Department of Chemistry and Institute of Nano-Bio Molecular Assemblies, Yonsei University, Seoul 120-749 (Korea)
Masahiko Iyoda, Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)
Dongho Kim, Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749 (Korea)
Search for more papers by this authorAbstract
Excited-state dynamic planarization processes play a crucial role in determining exciton size in cyclic systems, as reported for π-conjugated linear oligomers. Herein, we report time-resolved fluorescence spectra and molecular dynamics simulations of π-conjugated cyclic oligothiophenes in which the number of subunits was chosen to show the size-dependent dynamic planarization in the vicinity of a ring-to-linear behavioral turning point. Analyses on the evolution of the total fluorescence intensity and the ratio between 0–1 to 0–0 vibronic bands suggest that excitons formed in a cyclic oligothiophene composed of six subunits fully delocalize over the cyclic carbon backbone, whereas those formed in larger systems fail to achieve complete delocalization. With the aid of molecular dynamics simulations, it is shown that distorted structures unfavorable for efficient exciton delocalization are more easily populated as the size of the cyclic system increases.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201504588_sm_miscellaneous_information.pdf902.4 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280, 1741–1744.
- 2A. Facchetti, Nat. Mater. 2013, 12, 598–600.
- 3A. J. Heeger, Chem. Soc. Rev. 2010, 39, 2354–2371.
- 4W. Barford in Electronic and Optical Properties of Conjugated Polymers, Oxford University Press, New York, UK, 2005.
- 5M. T. Dang, L. Hirsch, G. Wantz, J. D. Wuest, Chem. Rev. 2013, 113, 3734–3765.
- 6A. Kohler, D. A. dos Santos, D. Beljonne, Z. Shuai, J.-L. Bredas, A. B. Holmes, A. Kraus, K. Mullen, R. H. Friend, Nature 1998, 392, 903–906.
- 7S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, C. Lienau, Science 2014, 344, 1001–1005.
- 8S. Tretiak, A. Saxena, R. L. Martin, A. R. Bishop, Phys. Rev. Lett. 2002, 89, 097402.
- 9N. P. Wells, D. A. Blank, Phys. Rev. Lett. 2008, 100, 086403.
- 10W. Yu, P. J. Donohoo-Vallett, J. Zhou, A. E. Bragg, J. Chem. Phys. 2014, 141, 044201.
- 11E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, D. S. Larsen, J. Phys. Chem. Lett. 2011, 2, 2764–2769.
- 12N. Banerji, S. Cowan, E. Vauthey, A. J. Heeger, J. Phys. Chem. C 2011, 115, 9726–9739.
- 13G. Duvanel, J. Grilj, A. Schuwey, A. Gossauerb, E. Vauthey, Photochem. Photobiol. Sci. 2007, 6, 956–963.
- 14W. Yu, J. Zhou, A. E. Bragg, J. Phys. Chem. Lett. 2012, 3, 1321–1328.
- 15N. M. Albu, D. J. Yaron, J. Phys. Chem. C 2013, 117, 12299–12306.
- 16I. H. Nayyar, E. R. Batista, S. Tretiak, A. Saxena, D. L. Smith, R. L. Martin, J. Phys. Chem. Lett. 2011, 2, 566–571.
- 17S. Rodríguez González, M. C. Ruiz Delgado, R. Caballero, P. De La Cruz, F. Langa, J. T. López Navarrete, J. Casado, J. Am. Chem. Soc. 2012, 134, 5675–5681.
- 18T. E. Dykstra, E. Hennebicq, D. Beljonne, J. Gierschner, G. Claudio, E. R. Bittner, J. Knoester, G. D. Scholes, J. Phys. Chem. B 2009, 113, 656–667.
- 19C. De Leener, E. Hennebicq, J. C. Sancho-Garcia, D. Beljonne, J. Phys. Chem. B 2009, 113, 1311–1322.
- 20W. Barford, D. G. Lidzey, D. V. Makhov, A. J. H. Meijer, J. Chem. Phys. 2010, 133, 044504.
- 21D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515, 384–388.
- 22R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 17646–17647.
- 23B. M. Wong, J. Phys. Chem. C 2009, 113, 21921–21927.
- 24T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, S. Yamago, J. Am. Chem. Soc. 2011, 133, 8354–8361.
- 25P. J. Evans, E. R. Darzi, R. Jasti, Nat. Chem. 2014, 6, 404–408.
- 26F. Zhang, G. Götz, H. D. F. Winkler, C. A. Schalley, P. Bäuerle, Angew. Chem. Int. Ed. 2009, 48, 6632–6635; Angew. Chem. 2009, 121, 6758–6762.
- 27E. Mena-Osteritz, F. Zhang, G. Götz, P. Reineker, P. Bäuerle, Beilstein J. Nanotechnol. 2011, 2, 720–726.
- 28F. Zhang, G. Götz, E. Mena-Osteritz, M. Weil, B. Sarkar, W. Kaimc, P. Bäuerle, Chem. Sci. 2011, 2, 781–784.
- 29M. Hoffmann, J. Karnbratt, M. H. Chang, L. M. Herz, B. Albinsson, H. L. Anderson, Angew. Chem. Int. Ed. 2008, 47, 4993–4996; Angew. Chem. 2008, 120, 5071–5074.
- 30D. V. Kondratuk, L. M. A. Perdigao, M. C. O’Sullivan, S. Svatek, G. Smith, J. N. O’Shea, P. H. Beton, H. L. Anderson, Angew. Chem. Int. Ed. 2012, 51, 6696–6699; Angew. Chem. 2012, 124, 6800–6803.
- 31J. Q. Gong, P. Parkinson, D. V. Kondratuk, G. Gil-Ramirez, H. L. Anderson, L. M. Herz, J. Phys. Chem. C 2015, 119, 6414–6420.
- 32K. Nakao, M. Nishimura, T. Tamachi, Y. Kuwatani, H. Miyasaka, T. Nishinaga, M. Iyoda, J. Am. Chem. Soc. 2006, 128, 16740–16747.
- 33A. V. Aggarwal, A. Thiessen, A. Idelson, D. Kalle, D. Würsch, T. Stangl, F. Steiner, S. Jester, J. Vogelsang, S. Höger, J. M. Lupton, Nat. Chem. 2013, 5, 964–970.
- 34L. Adamska, I. Nayyar, H. Chen, A. K. Swan, N. Oldani, S. Fernandez-Alberti, M. R. Golder, R. Jasti, S. K. Doorn, S. Tretiak, Nano Lett. 2014, 14, 6539–6546.
- 35P. Parkinson, D. V. Kondratuk, C. Menelaou, J. Q. Gong, H. L. Anderson, L. M. Herz, J. Phys. Chem. Lett. 2014, 5, 4356–4361.
- 36P. Kim, K. H. Park, W. Kim, T. Tamachi, M. Iyoda, D. Kim, J. Phys. Chem. Lett. 2015, 6, 451–456.
- 37J. Yang, S. Ham, T. W. Kim, K. H. Park, K. Nakao, H. Shimizu, M. Iyoda, D. Kim, J. Phys. Chem. B 2015, 119, 4116–4126.
- 38M. Bednarz, P. Reineker, E. Mena-Osteritz, P. Bäuerle, J. Lumin. 2004, 110, 225–231.
- 39R. J. Cogdell, J. Kohler, Biochem. J. 2009, 422, 193–205.
- 40J. K. Sprafke, D. V. Kondratuk, M. Wykes, A. L. Thompson, M. Hoffmann, R. Drevinskas, W. H. Chen, C. K. Yong, J. Karnbratt, J. E. Bullock, M. Malfois, M. R. Wasielewski, B. Albinsson, L. M. Herz, D. Zigmantas, D. Beljonne, H. L. Anderson, J. Am. Chem. Soc. 2011, 133, 17262–17273.
- 41J. Clark, C. Silva, R. H. Friend, F. C. Spano, Phys. Rev. Lett. 2007, 98, 206406.
- 42N. J. Hestand, F. C. Spano, J. Phys. Chem. B 2014, 118, 8352–8363.
- 43C. K. Yong, P. Parkinson, D. V. Kondratuk, W. H. Chen, A. Stannard, A. Summerfield, J. K. Sprafke, M. C. O’Sullivan, P. H. Beton, H. L. Anderson, L. M. Herz, Chem. Sci. 2015, 6, 181–189.
- 44J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006.
- 45M. H. Chang, M. Hoffmann, H. L. Anderson, L. M. Herz, J. Am. Chem. Soc. 2008, 130, 10171–10178.
- 46J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 2005, 26, 1781–1802.
- 47J. Lee, V. Stepanenko, J. Yang, H. Yoo, F. Schlosser, D. Bellinger, B. Engels, I. G. Scheblykin, F. Wurthner, D. Kim, ACS Nano 2013, 7, 5064–5076.
- 48G. Rossi, R. R. Chance, R. Silbey, J. Chem. Phys. 1989, 90, 7594–7601.
- 49M. Rumi, G. Zerbi, Chem. Phys. 1999, 242, 123–140.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.