Long-Range Residual Dipolar Couplings: A Tool for Determining the Configuration of Small Molecules
Dr. Nilamoni Nath
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Edward J. d'Auvergne
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Christian Griesinger
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)Search for more papers by this authorDr. Nilamoni Nath
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Edward J. d'Auvergne
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Christian Griesinger
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)Search for more papers by this authorAbstract
Together with NOE and J coupling, one-bond residual dipolar coupling (RDC), which reports on the three-dimensional orientation of an internuclear vector in the molecular frame, plays an important role in the conformation and configuration analysis of small molecules in solution by NMR spectroscopy. When the molecule has few CH bonds, or too many bonds are in parallel, the available RDCs may not be sufficient to obtain the alignment tensor used for structure elucidation. Long-range RDCs that connect nuclei over multiple bonds are normally not parallel to the single bonds and therefore complement one-bond RDCs. Herein we present a method for extracting the long-range RDC of a chosen proton or group of protons to all remotely connected carbon atoms, including non-protonated carbon atoms. Alignment tensors fitted directly to the total long-range couplings (T=J+D) enabled straightforward analysis of both the long-range and one-bond RDCs for strychnine.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201504432_sm_miscellaneous_information.pdf1.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. A. L. Anet, A. J. R. Bourn, J. Am. Chem. Soc. 1965, 87, 5250–5251.
- 2C. A. G. Haasnoot, F. A. A. M. Deleeuw, C. Altona, Tetrahedron 1980, 36, 2783–2792.
- 3D. Neuhaus, The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd ed., Wiley-VCH, New York, 2000.
- 4H. Sun, U. M. Reinscheid, E. L. Whitson, E. J. d’Auvergne, C. M. Ireland, A. Navarro-Vázquez, C. Griesinger, J. Am. Chem. Soc. 2011, 133, 14629–14636.
- 5K. C. Nicolaou, S. A. Snyder, Angew. Chem. Int. Ed. 2005, 44, 1012–1044; Angew. Chem. 2005, 117, 1036–1069.
- 6G. Pattenden, N. J. Ashweek, C. A. G. Baker-Glenn, G. M. Walker, J. G. K. Yee, Angew. Chem. Int. Ed. 2007, 46, 4359–4363; Angew. Chem. 2007, 119, 4437–4441.
- 7
- 7aM. G. Chini, R. Riccio, G. Bifulco, Magn. Reson. Chem. 2008, 46, 962–968;
- 7bG. Bifulco, P. Dambruoso, L. Gomez-Paloma, R. Riccio, Chem. Rev. 2007, 107, 3744–3779.
- 8
- 8aP. Haberz, J. Farjon, C. Griesinger, Angew. Chem. Int. Ed. 2005, 44, 427–429; Angew. Chem. 2005, 117, 431–433;
- 8bL. Arnold, A. Marx, C. M. Thiele, M. Reggelin, Chem. Eur. J. 2010, 16, 10342–10346;
- 8cN. C. Meyer, A. Krupp, V. Schmidts, C. M. Thiele, M. Reggelin, Angew. Chem. Int. Ed. 2012, 51, 8334–8338; Angew. Chem. 2012, 124, 8459–8463;
- 8dC. Merle, G. Kummerlöwe, J. C. Freudenberger, F. Halbach, W. Stower, C. L. von Gostomski, J. Hopfner, T. Beskers, M. Wilhelm, B. Luy, Angew. Chem. Int. Ed. 2013, 52, 10309–10312; Angew. Chem. 2013, 125, 10499–10502;
- 8eG. Kummerlöwe, J. Auernheimer, A. Lendlein, B. Luy, J. Am. Chem. Soc. 2007, 129, 6080–6081;
- 8fJ. C. Freudenberger, P. Spiteller, R. Bauer, H. Kessler, B. Luy, J. Am. Chem. Soc. 2004, 126, 14690–14691;
- 8gG. Kummerlöwe, E. F. McCord, S. F. Cheatham, S. Niss, R. W. Schnell, B. Luy, Chem. Eur. J. 2010, 16, 7087–7089.
- 9P. Trigo-Mouriño, A. Navarro-Vázquez, J. F. Ying, R. R. Gil, A. Bax, Angew. Chem. Int. Ed. 2011, 50, 7576–7580; Angew. Chem. 2011, 123, 7718–7722.
- 10P. Trigo-Mourino, R. Sifuentes, A. Navarro-Vazquez, C. Gayathri, H. Maruenda, R. R. Gil, Nat. Prod. Commun. 2012, 7, 735–738.
- 11A. Schuetz, J. Junker, A. Leonov, O. F. Lange, T. F. Molinski, C. Griesinger, J. Am. Chem. Soc. 2007, 129, 15114–15115.
- 12A. Schuetz, T. Murakami, N. Takada, J. Junker, M. Hashimoto, C. Griesinger, Angew. Chem. Int. Ed. 2008, 47, 2032–2034; Angew. Chem. 2008, 120, 2062–2064.
- 13C. Farès, J. Hassfeld, D. Menche, T. Carlomagno, Angew. Chem. Int. Ed. 2008, 47, 3722–3726; Angew. Chem. 2008, 120, 3782–3786.
- 14
- 14aC. M. Thiele, A. Marx, R. Berger, J. Fischer, M. Biel, A. Giannis, Angew. Chem. Int. Ed. 2006, 45, 4455–4460; Angew. Chem. 2006, 118, 4566–4571;
- 14bC. M. Thiele, Eur. J. Org. Chem. 2008, 5673–5685;
- 14cC. M. Thiele, A. Maliniak, B. Stevensson, J. Am. Chem. Soc. 2009, 131, 12878–12879.
- 15G. Kummerlöwe, B. Crone, M. Kretschmer, S. F. Kirsch, B. Luy, Angew. Chem. Int. Ed. 2011, 50, 2643–2645; Angew. Chem. 2011, 123, 2693–2696.
- 16
- 16aM. E. García, S. Pagola, A. Navarro-Vázquez, D. D. Phillips, C. Gayathri, H. Krakauer, P. W. Stephens, V. E. Nicotra, R. R. Gil, Angew. Chem. Int. Ed. 2009, 48, 5670–5674; Angew. Chem. 2009, 121, 5780–5784;
- 16bR. R. Gil, C. Gayathri, N. V. Tsarevsky, K. Matyjaszewski, J. Org. Chem. 2008, 73, 840–848.
- 17M. B. Schmid, M. Fleischmann, V. D’Elia, O. Reiser, W. Gronwald, R. M. Gschwind, ChemBioChem 2009, 10, 440–444.
- 18
- 18aG. Kummerlöwe, B. Luy, TrAC Trends Anal. Chem. 2009, 28, 483–493;
- 18bA. Enthart, J. C. Freudenberger, J. Furrer, H. Kessler, B. Luy, J. Magn. Reson. 2008, 192, 314–322.
- 19N. Tjandra, A. Bax, Science 1997, 278, 1697–1697.
- 20F. Hallwass, M. Schmidt, H. Sun, A. Mazur, G. Kummerlöwe, B. Luy, A. Navarro-Vázquez, C. Griesinger, U. M. Reinscheid, Angew. Chem. Int. Ed. 2011, 50, 9487–9490; Angew. Chem. 2011, 123, 9659–9662.
- 21
- 21aK. Y. Ding, J. Magn. Reson. 1999, 140, 495–498;
- 21bA. Bax, J. Magn. Reson. 1984, 57, 314–318.
- 22
- 22aC. Gayathri, N. V. Tsarevsky, R. R. Gil, Chem. Eur. J. 2010, 16, 3622–3626; PMMA=poly(methyl methacrylate);
- 22bJ. D. Snider, E. Troche-Pesqueira, S. R. Woodruff, C. Gayathri, N. V. Tsarevsky, R. R. Gil, Magn. Reson. Chem. 2012, 50, S 86–S91.
- 23Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT 2010.
- 24B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 106, 5151–5158.
- 25J. L. Marshall, Methods in Stereochemical Analysis, Vol. 2, Wiley-VCH, Weinheim, 1983.
- 26E. J. d’Auvergne, P. R. Gooley, J. Biomol. NMR 2008, 40, 107–133.
- 27H. Schwalbe, P. Schmidt, C. Griesinger, Coupling Constants Determined by ECOSY in Encyclopedia of Magnetic Resonance, Wiley, Hoboken, 2007.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.