Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites
Correction(s) for this article
-
Addendum: Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites
- Volume 127Issue 48Angewandte Chemie
- pages: 14422-14422
- First Published online: November 18, 2015
Dr. Zhuojun Yan
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin UniversityChangchun, Jilin 130012 (P.R. China)
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111 (Australia)
These authors contributed equally to this work.
Search for more papers by this authorDr. Ye Yuan
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)
These authors contributed equally to this work.
Search for more papers by this authorDr. Yuyang Tian
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)
Search for more papers by this authorProf. Daming Zhang
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin UniversityChangchun, Jilin 130012 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Guangshan Zhu
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)Search for more papers by this authorDr. Zhuojun Yan
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin UniversityChangchun, Jilin 130012 (P.R. China)
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111 (Australia)
These authors contributed equally to this work.
Search for more papers by this authorDr. Ye Yuan
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)
These authors contributed equally to this work.
Search for more papers by this authorDr. Yuyang Tian
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)
Search for more papers by this authorProf. Daming Zhang
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin UniversityChangchun, Jilin 130012 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Guangshan Zhu
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P.R. China)Search for more papers by this authorAbstract
The targeted synthesis of a series of novel charged porous aromatic frameworks (PAFs) is reported. The compounds PAF-23, PAF-24, and PAF-25 are built up by a tetrahedral building unit, lithium tetrakis(4-iodophenyl)borate (LTIPB), and different alkyne monomers as linkers by a Sonogashira–Hagihara coupling reaction. They possess excellent adsorption properties to organic molecules owing to their “breathing” dynamic frameworks. As these PAF materials assemble three effective sorption sites, namely the ion bond, phenyl ring, and triple bond together, they exhibit high affinity and capacity for iodine molecules. To the best of our knowledge, these PAF materials give the highest adsorption values among all porous materials (zeolites, metal–organic frameworks, and porous organic frameworks) reported to date.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201503362_sm_miscellaneous_information.pdf1.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. D. Vienna, Int. J. Appl. Glass Sci. 2010, 1, 309–321.
- 2E. Kintisch, Science 2005, 310, 1406–1406.
- 3R. C. Ewing, F. N. von Hippel, Science 2009, 325, 151–152.
- 4N. R. Soelberg, T. G. Garn, M. R. Greenhalgh, J. D. Law, R. Jubin, D. M. Strachan, P. K. Thallapally, Sci. Technol. Nucl. Install. 2013, 702496.
- 5M. I. Ojovan, W. E. Lee, An Introduction to Nuclear Waste Immobilisation, Elsevier Science, Amsterdam, 2005.
10.1016/B978-008044462-8/50022-3 Google Scholar
- 6“Developments in the Removal of Airborne Iodine Species with Metal Substituted Zeolites”: D. T. Pence, F. A. Duce, W. J. Maeck in Proceedings of the 12th AEC Air Cleaning Conference, August 1972, Paper No. CONF-720823.
- 7R. T. Jubin, Organic Iodine Removal from Simulated Dissolver Off-Gas Streams Using Silver Exchanged Mordenite, In Proceedings of the 16th DOE Nuclear Air Cleaning Conference, 1981, Paper No. CONF-8208322.
- 8D. R. Haefner, T. J. Tranter, Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey, INL/EXT-07–12299, Idaho National Laboratory: Idaho Falls, ID, 2007.
- 9L. Mohanambe, S. Vasudevan, Inorg. Chem. 2004, 43, 6421–6425.
- 10T. Hertzsch, F. Budde, E. Weber, J. Hülliger, Angew. Chem. Int. Ed. 2002, 41, 2281–2284; Angew. Chem. 2002, 114, 2385–2388.
- 11K. W. Chapman, P. J. Chupas, T. M. Nenoff, J. Am. Chem. Soc. 2010, 132, 8897–8899.
- 12Z. M. Wang, B. Zhang, H. Fujiwara, H. Kobayashi, M. Kurmoo, Chem. Commun. 2004, 416–417.
- 13H. J. Choi, M. P. Suh, J. Am. Chem. Soc. 2004, 126, 15844-15844.
- 14B. F. Abrahams, M. Moylan, S. D. Orchard, R. Robson, Angew. Chem. Int. Ed. 2003, 42, 1848–1851; Angew. Chem. 2003, 115, 1892–1895.
- 15C. E. Willans, S. French, K. M. Anderson, L. J. Barbour, J.-A. Gertenbach, G. O. Lloyd, R. J. Dyer, P. C. Junk, J. W. Steed, Dalton Trans. 2011, 40, 573–582.
- 16T. J. Garino, T. M. Nenoff, J. L. Krumhansl, D. X. Rademacher, J. Am. Ceram. Soc. 2011, 94, 2412–2419.
- 17J. Y. Lu, A. M. Babb, Chem. Commun. 2003, 1346–1347.
- 18J. L. Krumhansl, T. M. Nenoff, Appl. Geochem. 2011, 26, 57–64.
- 19L. Dobrzańska, G. O. Lioyd, H. G. Raubenheimer, L. J. Barbour, J. Am. Chem. Soc. 2006, 128, 698–699.
- 20M. H. Zeng, Q. X. Wang, Y. X. Tan, S. Hu, H. X. Zhao, L. S. Long, M. Kurmoo, J. Am. Chem. Soc. 2010, 132, 2561–2563.
- 21Z. M. Wang, Y. J. Zhang, T. Liu, M. Kurmoo, S. Gao, Adv. Funct. Mater. 2007, 17, 1523–1536.
- 22D. F. Sava, M. A. Rodriguez, K. W. Chapman, P. J. Chupas, J. A. Greathouse, P. S. Crozier, T. M. Nenoff, J. Am. Chem. Soc. 2011, 133, 12398–12401.
- 23D. F. Sava, K. W. Chapman, M. A. Rodriguez, J. A. Greathouse, P. S. Crozier, H. Y. Zhao, P. J. Chupas, T. M. Nenoff, Chem. Mater. 2013, 25, 2591–2596.
- 24H. Kitagawa, H. Ohtsu, M. Kawano, Angew. Chem. Int. Ed. 2013, 52, 12395–12399; Angew. Chem. 2013, 125, 12621–12625.
- 25A. P. Katsoulidis, J. Q. He, M. G. Kanatzidis, Chem. Mater. 2012, 24, 1937–1943.
- 26C. Y. Pei, T. Ben, S. X. Xu, S. L. Qiu, J. Mater. Chem. A 2014, 2, 7179–7187.
- 27T. Hasell, M. Schmidtmann, A. I. Cooper, J. Am. Chem. Soc. 2011, 133, 14920–14923.
- 28Y. F. Chen, H. X. Sun, R. X. Yang, T. T. Wang, C. J. Pei, Z. T. Xiang, Z. Q. Zhu, W. D. Liang, A. Li, W. Q. Deng, J. Mater. Chem. A 2015, 3, 87–91.
- 29N. Malek, T. Maris, M. Simard, J. D. Wuest, J. Am. Chem. Soc. 2005, 127, 5910–5916.
- 30J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper, Angew. Chem. Int. Ed. 2007, 46, 8574–8578; Angew. Chem. 2007, 119, 8728–8732.
- 31E. Stöckel, X. F. Wu, A. Trewin, C. D. Wood, R. Clowes, N. L. Campbell, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Chem. Commun. 2009, 212–214.
- 32J. R. Holst, E. Stöckel, D. J. Adams, A. I. Cooper, Macromolecules 2010, 43, 8531–8538.
- 33S. Kitagawa, K. Uemura, Chem. Soc. Rev. 2005, 34, 109–119.
- 34T. K. Maji, K. Uemura, H. C. Chang, R. Matsuda, S. Kitagawa, Angew. Chem. Int. Ed. 2004, 43, 3269–3272; Angew. Chem. 2004, 116, 3331–3334.
- 35S. Hu, K. H. He, M. H. Zeng, H. H. Zou, Y. M. Jiang, Inorg. Chem. 2008, 47, 5218–5224.
- 36R. T. Woodward, L. A. Stevens, R. Dawson, M. Vijayaraghavan, T. Hasel, I. P. Silverwood, A. V. Ewing, T. Ratvijitvech, J. D. Exley, S. Y. Chong, F. Blanc, D. J. Adams, S. G. Kazarian, C. E. Snape, T. C. Drage, A. I. Cooper, J. Am. Chem. Soc. 2014, 136, 9028–9035.
- 37K. V. Rao, S. Mohapatra, T. K. Maji, S. J. George, Chem. Eur. J. 2012, 18, 4505–4509.
- 38Q. K. Liu, J. P. Ma, Y. B. Dong, Chem. Commun. 2011, 47, 7185–7187.
- 39M. Murthi, R. Q. Snurr, Langmuir 2004, 20, 2489–2497.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.