Towards Maintenance-Free Biosensors for Hundreds of Bind/Release Cycles†
Corresponding Author
Dr. Radislav A. Potyrailo
GE Global Research Center, Niskayuna, NY 12309 (USA)
GE Global Research Center, Niskayuna, NY 12309 (USA)Search for more papers by this authorAnthony J. Murray
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorNandini Nagraj
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorAndrew D. Pris
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorJeffrey M. Ashe
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorMilos Todorovic
GE Global Research Center, Niskayuna, NY 12309 (USA)
Present address: Lux Research, Boston, MA 02110 (USA)
Search for more papers by this authorCorresponding Author
Dr. Radislav A. Potyrailo
GE Global Research Center, Niskayuna, NY 12309 (USA)
GE Global Research Center, Niskayuna, NY 12309 (USA)Search for more papers by this authorAnthony J. Murray
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorNandini Nagraj
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorAndrew D. Pris
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorJeffrey M. Ashe
GE Global Research Center, Niskayuna, NY 12309 (USA)
Search for more papers by this authorMilos Todorovic
GE Global Research Center, Niskayuna, NY 12309 (USA)
Present address: Lux Research, Boston, MA 02110 (USA)
Search for more papers by this authorThis work has been supported by the DHS (HSHQDS-10-C-00206). We thank J. Burczak for fruitful discussions.
Abstract
A single aptamer bioreceptor layer was formed using a common streptavidin–biotin immobilization strategy and employed for 100–365 bind/release cycles. Chemically induced aptamer unfolding and release of its bound target was accomplished using alkaline solutions with high salt concentrations or deionized (DI) water. The use of DI water scavenged from the ambient atmosphere represents a first step towards maintenance-free biosensors that do not require the storage of liquid reagents. The aptamer binding affinity was determined by surface plasmon resonance and found to be almost constant over 100–365 bind/release cycles with a variation of less than 5 % relative standard deviation. This reversible operation of biosensors based on immobilized aptamers without storage of liquid reagents introduces a conceptually new perspective in biosensing. Such new biosensing capability will be important for distributed sensor networks, sensors in resource-limited settings, and wearable sensor applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201411094_sm_miscellaneous_information.pdf705 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. P. F. Turner, Science 2000, 290, 1315;
- 1bJ. P. Fitch, E. Raber, D. R. Imbro, Science 2003, 302, 1350;
- 1cJ. L. Arlett, E. B. Myers, M. L. Roukes, Nat. Nanotechnol. 2011, 6, 203;
- 1dA. G. Brolo, Nat. Photonics 2012, 6, 709;
- 1eM. Käll, Nat. Nanotechnol. 2012, 7, 347.
- 2
- 2aP. McFadden, Science 2002, 297, 2075;
- 2bW. D. Wilson, Science 2002, 295, 2103.
- 3
- 3aK. Kramer, B. Hock in Ultrathin Electrochemical Chemo- and Biosensors (Ed.: ), Springer, Berlin, 2004;
10.1007/978-3-662-05204-4_1 Google Scholar
- 3bS. J. Updike, G. P. Hicks, Nature 1967, 214, 986;
- 3cV. Nanduri, I. B. Sorokulova, A. M. Samoylov, A. L. Simonian, V. A. Petrenko, V. Vodyanoy, Biosens. Bioelectron. 2007, 22, 986;
- 3dJ. H. Lim, J. Park, J. H. Ahn, H. J. Jin, S. Hong, T. H. Park, Biosens. Bioelectron. 2013, 39, 244;
- 3eM. S. Mannoor, S. Zhang, A. J. Link, M. C. McAlpine, Proc. Natl. Acad. Sci. USA 2010, 107, 19207;
- 3fL. Bousse, Sens. Actuators B 1996, 34, 270;
- 3gH. J. Jin, S. H. Lee, T. H. Kim, J. Park, H. S. Song, T. H. Park, S. Hong, Biosens. Bioelectron. 2012, 35, 335;
- 3hS. J. Park, O. S. Kwon, S. H. Lee, H. S. Song, T. H. Park, J. Jang, Nano Lett. 2012, 12, 5082;
- 3iH. J. Ko, T. H. Park, Biosens. Bioelectron. 2008, 23, 1017;
- 3jD. Restrepo, T. Miyamoto, B. P. Bryant, J. H. Teeter, Science 1990, 249, 1166;
- 3kT. Horlacher, P. H. Seeberger, Chem. Soc. Rev. 2008, 37, 1414;
- 3lS. Fukui, T. Feizi, C. Galustian, A. M. Lawson, W. Chai, Nat. Biotechnol. 2002, 20, 1011;
- 3mA. D. Ellington, J. W. Szostak, Nature 1990, 346, 818;
- 3nC. Tuerk, L. Gold, Science 1990, 249, 505.
- 4
- 4aT. Hermann, D. J. Patel, Science 2000, 287, 820;
- 4b The Aptamer Handbook: Functional Oligonucleotides and Their Applications (Ed.: ), Wiley-VCH, Weinheim, 2006;
- 4c Aptamers in Bioanalysis (Ed.: ), Wiley, Hoboken, 2009;
- 4d Functional Nucleic Acids for Analytical Applications (Eds.: ), Springer, New York, 2009;
- 4eM. Famulok, G. Mayer, Acc. Chem. Res. 2011, 44, 1349.
- 5
- 5aR. A. Potyrailo, Angew. Chem. Int. Ed. 2006, 45, 702; Angew. Chem. 2006, 118, 718;
- 5bK. Sefah, D. Shangguan, X. Xiong, M. B. O′Donoghue, W. Tan, Nat. Protoc. 2010, 5, 1169;
- 5cM. Kimoto, R. Yamashige, K.-I. Matsunaga, S. Yokoyama, I. Hirao, Nat. Biotechnol. 2013, 31, 453;
- 5dK. Sefah, Z. Yang, K. M. Bradley, S. Hoshika, E. Jiménez, L. Zhang, G. Zhu, S. Shanker, F. Yu, D. Turek, W. Tan, S. A. Benner, Proc. Natl. Acad. Sci. USA 2014, 111, 1449.
- 6 Artificial Receptors for Chemical Sensors (Eds.: ), Wiley-VCH, Weinheim, 2011.
- 7
- 7aJ. Švitel, A. Dzgoev, K. Ramanathan, B. Danielsson, Biosens. Bioelectron. 2000, 15, 411;
- 7bS. Choi, J. Chae, Biosens. Bioelectron. 2009, 25, 527;
- 7cH. Xu, K. Gorgy, C. Gondran, A. Le Goff, N. Spinelli, C. Lopez, E. Defrancq, S. Cosnier, Biosens. Bioelectron. 2013, 41, 90.
- 8R. A. Potyrailo, R. C. Conrad, A. D. Ellington, G. M. Hieftje, Anal. Chem. 1998, 70, 3419.
- 9
- 9aM. Liss, B. Petersen, H. Wolf, E. Prohaska, Anal. Chem. 2002, 74, 4488;
- 9bW. U. Dittmer, A. Reuter, F. C. Simmel, Angew. Chem. Int. Ed. 2004, 43, 3550; Angew. Chem. 2004, 116, 3634;
- 9cM. D. Schlensog, T. M. A. Gronewold, M. Tewes, M. Famulok, E. Quandt, Sens. Actuators B 2004, 101, 308;
- 9dA.-E. Radi, J. L. Acero Sanchez, E. Baldrich, C. K. O′Sullivan, J. Am. Chem. Soc. 2006, 128, 117;
- 9eB. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, K. W. Plaxco, J. Am. Chem. Soc. 2006, 128, 3138;
- 9fS. Liu, X. Zhang, W. Luo, Z. Wang, X. Guo, M. L. Steigerwald, X. Fang, Angew. Chem. Int. Ed. 2011, 50, 2496; Angew. Chem. 2011, 123, 2544;
- 9gQ. Sheng, R. Liu, S. Zhang, J. Zheng, Biosens. Bioelectron. 2014, 51, 191;
- 9hJ. Hu, Y. Yu, J. C. Brooks, L. A. Godwin, S. Somasundaram, F. Torabinejad, J. Kim, C. Shannon, C. J. Easley, J. Am. Chem. Soc. 2014, 136, 8467.
- 10L. Guo, D.-H. Kim, Chem. Commun. 2011, 47, 7125.
- 11
- 11aD. Wijesuriya, K. Breslin, G. Anderson, L. Shriver-Lake, F. S. Ligler, Biosens. Bioelectron. 1994, 9, 585;
- 11bK. Andersson, M. Hämäläinen, M. Malmqvist, Anal. Chem. 1999, 71, 2475;
- 11cV. B. Kandimalla, N. S. Neeta, N. G. Karanth, M. S. Thakur, K. R. Roshini, B. E. Rani, A. Pasha, N. G. Karanth, Biosens. Bioelectron. 2004, 20, 903;
- 11dA. W. Drake, S. L. Klakamp, J. Immunol. Methods 2011, 371, 165.
- 12C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, W. Fu, Sensors 2010, 10, 5859.
- 13
- 13aR. Byrne, D. Diamond, Nat. Mater. 2006, 5, 421;
- 13bP. Anzenbacher Jr., F. Li, M. A. Palacios, Angew. Chem. Int. Ed. 2012, 51, 2345; Angew. Chem. 2012, 124, 2395;
- 13cH. Liu, Y. Xiang, Y. Lu, R. M. Crooks, Angew. Chem. Int. Ed. 2012, 51, 6925; Angew. Chem. 2012, 124, 484;
- 13dP. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, Angew. Chem. Int. Ed. 2012, 51, 11585; Angew. Chem. 2012, 124, 11753.
- 14L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, J. J. Toole, Nature 1992, 355, 564.
- 15R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, J. Feigon, Proc. Natl. Acad. Sci. USA 1993, 90, 3745.
- 16
- 16aM. Tsiang, C. S. Gibbs, L. C. Griffin, K. E. Dunn, L. L. K. Leung, J. Biol. Chem. 1995, 270, 19370;
- 16bD. M. Tasset, M. F. Kubik, W. Steiner, J. Mol. Biol. 1997, 272, 688;
- 16cJ. J. Li, X. Fang, W. Tan, Biochem. Biophys. Res. Commun. 2002, 292, 31.
- 17
- 17aA. Chilkoti, P. S. Stayton, J. Am. Chem. Soc. 1995, 117, 10622;
- 17bU. Piran, W. J. Riordan, J. Immunol. Methods 1990, 133, 141.
- 18 Surface Plasmon Resonance Based Sensors (Ed.: ), Springer, Berlin, 2006.
- 19R. Chen, C. Surman, R. Potyrailo, A. Pris, E. A. Holwitt, V. K. Sorola, J. L. Kiel, Proc. SPIE 2011, 8034, 803405.
- 20
- 20aW. F. Koch, G. Marinenko, R. C. Paule, J. Res. Natl. Bur. Stand. 1986, 91, 33;
- 20bH. H. Jonsson, B. Vonnegut, J. Appl. Meteorol. 1991, 30, 1220.
- 21
- 21aR. J. White, N. Phares, A. A. Lubin, Y. Xiao, K. W. Plaxco, Langmuir 2008, 24, 10513;
- 21bC. Daniel, Y. Roupioz, D. Gasparutto, T. Livache, A. Buhot, PLoS ONE 2013, 8, e 75419;
- 21cR. Wilson, A. Cossins, D. V. Nicolau, S. Missailidis, Nucleic Acid Ther. 2013, 23, 88.
- 22
- 22aB. I. Kankia, L. A. Marky, J. Am. Chem. Soc. 2001, 123, 10799;
- 22bR. Nutiu, Y. Li, J. Am. Chem. Soc. 2003, 125, 4771;
- 22cM. Fialová, J. Kypr, M. Vorlíčková, Biochem. Biophys. Res. Commun. 2006, 344, 50;
- 22dT. Hianik, V. Ostatná, M. Sonlajtnerova, I. Grman, Bioelectrochemistry 2007, 70, 127;
- 22eS. Nagatoishi, Y. Tanaka, K. Tsumoto, Biochem. Biophys. Res. Commun. 2007, 352, 812;
- 22fP. Baaske, C. J. Wienken, P. Reineck, S. Duhr, D. Braun, Angew. Chem. Int. Ed. 2010, 49, 2238; Angew. Chem. 2010, 122, 2286.
- 23A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley, New York, 2001.
- 24 Handbook of Chemical and Biological Sensors (Eds.: ), IOP Publishing, Bristol, UK, 1996.
- 25
- 25aR. A. Potyrailo, C. Surman, N. N. Nagraj, A. Burns, Chem. Rev. 2011, 111, 7315;
- 25bR. A. Potyrailo, N. Nagraj, C. Surman, H. Boudries, H. Lai, J. M. Slocik, N. Kelley-Loughnane, R. R. Naik, TrAC Trends Anal. Chem. 2012, 40, 133.
- 26
- 26aR. R. White, B. A. Sullenger, C. P. Rusconi, J. Clin. Invest. 2000, 106, 929;
- 26bS. E. Bassett, S. M. Fennewald, D. J. King, X. Li, N. K. Herzog, R. Shope, J. F. Aronson, B. A. Luxon, D. G. Gorenstein, Biochemistry 2004, 43, 9105;
- 26cR. E. Wang, H. Wu, Y. Niu, J. Cai, Curr. Med. Chem. 2011, 18, 4126.
- 27
- 27aR. A. Potyrailo, C. Surman, R. Chen, S. Go, K. Dovidenko, W. G. Morris, E. Holwitt, V. Sorola, J. L. Kiel, Proc. Transducers 2009, 2378;
- 27bR. A. Potyrailo, C. Surman, D. Monk, W. G. Morris, T. Wortley, M. Vincent, R. Diana, V. Pizzi, J. Carter, G. Gach, S. Klensmeden, H. Ehring, Meas. Sci. Technol. 2011, 22, 082001.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.