Chirality-Assisted Ring-Like Aggregation of Aβ(1–40) at Liquid–Solid Interfaces: A Stereoselective Two-Step Assembly Process†
Guanbin Gao
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (PR China)
These authors contributed equally to this work.
Search for more papers by this authorProf. Mingxi Zhang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (PR China)
These authors contributed equally to this work.
Search for more papers by this authorDr. Pei Lu
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (PR China)
Search for more papers by this authorDr. Guanlun Guo
Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, Wuhan 430070 (PR China)
Search for more papers by this authorProf. Dong Wang
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (PR China)
Search for more papers by this authorCorresponding Author
Prof. Taolei Sun
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (PR China)
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 (PR China)
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (PR China)Search for more papers by this authorGuanbin Gao
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (PR China)
These authors contributed equally to this work.
Search for more papers by this authorProf. Mingxi Zhang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (PR China)
These authors contributed equally to this work.
Search for more papers by this authorDr. Pei Lu
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (PR China)
Search for more papers by this authorDr. Guanlun Guo
Hubei Key Laboratory of Advanced Technology of Automotive Components, Wuhan University of Technology, Wuhan 430070 (PR China)
Search for more papers by this authorProf. Dong Wang
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (PR China)
Search for more papers by this authorCorresponding Author
Prof. Taolei Sun
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (PR China)
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 (PR China)
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (PR China)Search for more papers by this authorThis work was supported by National Natural Science Foundation of China (91127027, 51173142, 21105078), the China National Funds for Distinguished Young Scientists (51325302), the Major State Basic Research Development Program of China (973 Program: 2013CB933002), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1169), and the Program of Introducing Talents of Discipline to Universities (B13035).
Abstract
Molecular chirality is introduced at liquid–solid interfaces. A ring-like aggregation of amyloid Aβ(1–40) on N-isobutyryl-L-cysteine (L-NIBC)-modified gold substrate occurs at low Aβ(1–40) concentration, while D-NIBC modification only results in rod-like aggregation. Utilizing atomic force microscope controlled tip-enhanced Raman scattering, we directly observe the secondary structure information for Aβ(1–40) assembly in situ at the nanoscale. D- or L-NIBC on the surface can guide parallel or nonparallel alignment of β-hairpins through a two-step process based on electrostatic-interaction-enhanced adsorption and subsequent stereoselective recognition. Possible electrostatic interaction sites (R5 and K16) and a chiral recognition site (H14) of Aβ(1–40) are proposed, which may provide insight into the understanding of this effect.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201410768_sm_miscellaneous_information.pdf2.3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. M. Dobson, Trends Biochem. Sci. 1999, 24, 329–332;
- 1bD. J. Selkoe, Physiol. Rev. 2001, 81, 741–766;
- 1cJ. Hardy, D. J. Selkoe, Science 2002, 297, 353–356;
- 1dC. M. Dobson, Nature 2003, 426, 884–890;
- 1eJ. P. Cleary, D. M. Walsh, J. J. Hofmeister, G. M. Shankar, M. A. Kuskowski, D. J. Selkoe, K. H. Ashe, Nat. Neurosci. 2005, 8, 79–84.
- 2
- 2aT. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert, R. Riek, Proc. Natl. Acad. Sci. USA 2005, 102, 17342–17347;
- 2bN. Mousseau, P. Derreumaux, Acc. Chem. Res. 2005, 38, 885–891;
- 2cT. Eichner, E. R. Sheena, Mol. Cell 2011, 43, 8–18;
- 2dL. Larini, J. E. Shea, Biophys. J. 2012, 103, 576–586;
- 2eR. Tycko, R. B. Wickner, Acc. Chem. Res. 2013, 46, 1487–1496.
- 3
- 3aC. Haass, M. G. Schlossmacher, A. Y. Hung, C. V. Pelfrey, A. Mellon, B. L. Ostaszewski, I. Lieberburg, E. H. Koo, D. Schenk, D. B. Teplow, D. J. Selkoe, Nature 1992, 359, 322–325;
- 3bR. Sabaté, J. Estelrich, J. Phys. Chem. B 2005, 109, 11027–11032;
- 3cL. Shen, T. Adachi, D. V. Bout, X. Y. Zhu, J. Am. Chem. Soc. 2012, 134, 14172–14178.
- 4
- 4aM. Zhu, P. O. Souillac, C. Ionescu-Zanetti, S. A. Carter, A. L. Fink, J. Biol. Chem. 2002, 277, 50914–50922;
- 4bM. F. M. Engel, C. C. VandenAkker, M. Schleeger, K. P. Velikov, G. H. Koenderink, M. Bonn, J. Am. Chem. Soc. 2012, 134, 14781–14788;
- 4cM. F. M. Sciacca, J. R. Brender, D. K. Lee, A. Ramamoorthy, Biochemistry 2012, 51, 7676–7684;
- 4dM. F. M. Sciacca, S. A. Kotler, J. R. Brender, J. Chen, D. K. Lee, A. Ramamoorthy, Biophys. J. 2012, 103, 702–710;
- 4eS. A. Kotler, P. Walsh, J. R. Brender, A. Ramamoorthy, Chem. Soc. Rev. 2014, 43, 6692–6700.
- 5
- 5aI. W. Hamley, Nat. Chem. 2010, 2, 707–708;
- 5bB. Moores, E. Drolle, S. J. Attwood, J. Simons, Z. Leonenko, PLoS One 2011, 6, e 25954;
- 5cA. Keller, M. Fritzsche, Y. P. Yu, Q. Liu, Y. M. Li, M. Dong, F. Besenbacher, ACS Nano 2011, 5, 2770–2778;
- 5dQ. Wang, N. Shah, J. Zhao, C. Wang, C. Zhao, L. Liu, L. Li, F. Zhou, J. Zheng, Phys. Chem. Chem. Phys. 2011, 13, 15200–15210.
- 6
- 6aW. A. Bonner, Origins Life Evol. Biospheres 1991, 21, 59–111;
- 6bA. Berthod, Anal. Chem. 2006, 78, 2093–2099;
- 6cJ. Zhang, M. Zhang, K. Tang, F. Verpoort, T. Sun, Small 2014, 10, 32–46.
- 7
- 7aM. Geva, F. Frolow, M. Eisenstein, L. Addadi, J. Am. Chem. Soc. 2003, 125, 696–704;
- 7bT. Sun, D. Han, K. Rhemann, L. Chi, H. Fuchs, J. Am. Chem. Soc. 2007, 129, 1496–1497;
- 7cK. Tang, H. Gan, Y. Li, L. Chi, T. Sun, H. Fuchs, J. Am. Chem. Soc. 2008, 130, 11284–11285;
- 7dH. Gan, K. Tang, T. Sun, M. Hirtz, Y. Li, L. Chi, S. Butz, H. Fuchs, Angew. Chem. Int. Ed. 2009, 48, 5282–5286; Angew. Chem. 2009, 121, 5386–5390;
- 7eX. Wang, H. Gan, T. Sun, Adv. Funct. Mater. 2011, 21, 3276–3281;
- 7fG. Qing, T. Sun, Adv. Mater. 2011, 23, 1615–1620;
- 7gM. Zhang, G. Qing, T. Sun, Chem. Soc. Rev. 2012, 41, 1972–1984;
- 7hG. Qing, T. Sun, NPG Asia Mater. 2012, 4, e 4;
- 7iG. Qing, S. Zhao, Y. Xiong, Z. Lv, F. Jiang, Y. Liu, H. Chen, M. Zhang, T. Sun, J. Am. Chem. Soc. 2014, 136, 10736–10742.
- 8
- 8aA. Lomakin, D. S. Chung, G. B. Benedek, D. A. Kirschner, D. B. Teplow, Proc. Natl. Acad. Sci. USA 1996, 93, 1125–1129;
- 8bF. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2006, 75, 333–366.
- 9
- 9aR. Wetzel, Acc. Chem. Res. 2006, 39, 671–679;
- 9bS. Vivekanandan, J. R. Brender, S. Y. Lee, A. Ramamoorthy, Biochem. Biophys. Res. Commun. 2011, 411, 312–316;
- 9cI. W. Hamley, Chem. Rev. 2012, 112, 5147–5192;
- 9dS. Campioni, G. Carret, S. Jordens, L. Nicoud, R. Mezzenga, R. Riek, J. Am. Chem. Soc. 2014, 136, 2866–2875.
- 10
- 10aM. Schmidt, C. Sachse, W. Richter, C. Xu, M. Fändrich, N. Grigorieff, Proc. Natl. Acad. Sci. USA 2009, 106, 19813–19818;
- 10bY. Miller, B. Y. Ma, R. Nussinov, Chem. Rev. 2010, 110, 4820–4838.
- 11
- 11aE. D. Eanes, G. G. Glenner, J. Histochem. Cytochem. 1968, 16, 673–677;
- 11bJ. J. Balbach, A. T. Petkova, N. A. Oyler, O. N. Antzutkin, D. J. Gordon, S. C. Meredith, R. Tycko, Biophys. J. 2002, 83, 1205–1216;
- 11cR. Tycko, Biochemistry 2003, 42, 3151–3159;
- 11dM. Margittai, R. Langen, Q. Rev. Biophys. 2008, 41, 265–297.
- 12
- 12aE. Bailo, V. Deckert, Chem. Soc. Rev. 2008, 37, 921–930;
- 12bT. Schmid, L. Opilik, C. Blum, R. Zenobi, Angew. Chem. Int. Ed. 2013, 52, 5940–5954; Angew. Chem. 2013, 125, 6054–6070.
- 13
- 13aE. Bailo, V. Deckert, Angew. Chem. Int. Ed. 2008, 47, 1658–1661; Angew. Chem. 2008, 120, 1682–1685;
- 13bD. Kurouski, S. Zaleski, F. Casadio, R. P. V. Duyne, N. C. Shah, J. Am. Chem. Soc. 2014, 136, 8677–8684.
- 14
- 14aD. M. Byler, H. Susi, J. Ind. Microbiol. Biotechnol. 1988, 3, 73–88;
- 14bN. C. Maiti, M. M. Apetri, M. G. Zagorski, P. R. Carey, V. E. Anderson, J. Am. Chem. Soc. 2004, 126, 2399–2408;
- 14cD. Kurouski, T. Deckert-Gaudig, V. Deckert, I. K. Lednev, J. Am. Chem. Soc. 2012, 134, 13323–13329;
- 14dM. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, R. Zenobi, ACS Nano 2013, 7, 911–920.
- 15
- 15aJ. Adamcik, A. Berquand, R. Mezzenga, Appl. Phys. Lett. 2011, 98, 193701–193703;
- 15bH. Liu, N. Chen, S. Fujinami, D. Louzguine-Luzgin, K. Nakajima, T. Nishi, Macromolecules 2012, 45, 8770–8779.
- 16
- 16aT. P. Knowles, A. W. Fitzpatrick, S. Meehan, H. R. Mott, M. Vendruscolo, C. M. Dobson, M. E. Welland, Science 2007, 318, 1900–1903;
- 16bT. P. Knowles, MJ. Buehler, Nat. Nanotechnol. 2011, 6, 469–479;
- 16cJ. Adamcik, C. Lara, I. Usov, J. S. Jeong, F. S. Ruggeri, G. Dietler, H. A. Lashuel, I. W. Hamleyd, R. Mezzenga, Nanoscale 2012, 4, 4426–4429.
- 17
- 17aR. Paparcone, S. Keten, MJ. Buehler, J. Biomechnol. 2010, 43, 1196–1201;
- 17bJ. Adamcik, R. Mezzenga, Curr. Opin. Colloid Interface Sci. 2012, 17, 369–376.
- 18
- 18aL. O. Tjernberg, J. Näslund, F. Lindqvist, J. Johansson, A. R. Karlström, J. Thyberg, L. Terenius, C. Nordstedt, J. Biol. Chem. 1996, 271, 8545–8548;
- 18bW. P. Esler, E. R. Stimson, J. R. Ghilardi, Y.-A. Lu, A. M. Felix, H. V. Vinters, P. W. Mantyh, J. P. Lee, J. E. Maggio, Biochemistry 1996, 35, 13914–13921;
- 18cM. J. Krysmann, V. Castelletto, A. Kelarakis, I. W. Hamley, R. A. Hule, D. J. Pochan, Biochemistry 2008, 47, 4597–4605.
- 19
- 19aA. T. Petkova, R. D. Leapman, Z. H. Guo, W. M. Yau, M. P. Mattson, R. Tycko, Science 2005, 307, 262–265;
- 19bK. L. Sciarretta, D. J. Gordon, A. T. Petkova, R. Tycko, S. C. Meredith, Biochemistry 2005, 44, 6003–6014.
- 20
- 20aA. T. Petkova, W.-M. Yau, R. Tycko, Biochemistry 2006, 45, 498–512;
- 20bT. Takeda, D. K. Klimov, J. Phys. Chem. B 2009, 113, 11848–11857.
- 21
- 21aA. T. Petkova, Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman, F. Delaglio, A. R. Tycko, Proc. Natl. Acad. Sci. USA 2002, 99, 16742–16747;
- 21bR. Paparcone, M. A. Pires, M. J. Buehler, Biochemistry 2010, 49, 8967–8977.
- 22S. Jordens, E. E. Riley, I. Usov, L. Isa, P. D. Olmsted, R. Mezzenga, ACS Nano 2014, 8, 11071–11079.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.