Influence of Ligand Architecture on Oxidation Reactions by High-Valent Nonheme Manganese Oxo Complexes Using Water as a Source of Oxygen†
Prasenjit Barman
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Search for more papers by this authorDr. Anil Kumar Vardhaman
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Search for more papers by this authorDr. Bodo Martin
Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Search for more papers by this authorSvenja J. Wörner
Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Search for more papers by this authorCorresponding Author
Dr. Chivukula V. Sastri
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Chivukula V. Sastri, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Peter Comba, Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Peter Comba
Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Chivukula V. Sastri, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Peter Comba, Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Search for more papers by this authorPrasenjit Barman
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Search for more papers by this authorDr. Anil Kumar Vardhaman
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Search for more papers by this authorDr. Bodo Martin
Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Search for more papers by this authorSvenja J. Wörner
Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Search for more papers by this authorCorresponding Author
Dr. Chivukula V. Sastri
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Chivukula V. Sastri, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Peter Comba, Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Peter Comba
Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Chivukula V. Sastri, Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039 (India)
Peter Comba, Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
Search for more papers by this authorResearch support was provided by the Department of Science and Technology, India (SR/S1/IC-02/2009) and the Council for Scientific & Industrial Research (01(2527)/11/EMR-II) to C.V.S. Support by the University of Heidelberg is gratefully acknowledged.
Abstract
Mononuclear nonheme MnIVO complexes with two isomers of a bispidine ligand have been synthesized and characterized by various spectroscopies and density functional theory (DFT). The MnIVO complexes show reactivity in oxidation reactions (hydrogen-atom abstraction and sulfoxidation). Interestingly, one of the isomers (L1) is significantly more reactive than the other (L2), while in the corresponding FeIVO based oxidation reactions the L2-based system was previously found to be more reactive than the L1-based catalyst. This inversion of reactivities is discussed on the basis of DFT and molecular mechanics (MM) model calculations, which indicate that the order of reactivities are primarily due to a switch of reaction channels (σ versus π) and concomitant steric effects.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201409476_sm_miscellaneous_information.pdf1.6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Tanase, E. Bouwman, Advances in Inorganic Chemistry, Vol. 58 (Eds.: ), Elsevier, San Diego, 2006, pp. 29–75;
10.1016/S0898-8838(05)58002-4 Google Scholar
- 1bI. Garcia-Bosch, A. Company, C. W. Cady, S. Styring, W. R. Browne, X. Ribas, M. Costas, Angew. Chem. Int. Ed. 2011, 50, 5648–5653; Angew. Chem. 2011, 123, 5766–5771.
- 2
- 2aS. C. Sawant, X. Wu, J. Cho, K.-B. Cho, S. H. Kim, M. S. Seo, Y.-M. Lee, M. Kubo, T. Ogura, S. Shaik, W. Nam, Angew. Chem. Int. Ed. 2010, 49, 8190–8194; Angew. Chem. 2010, 122, 8366–8370;
- 2bW. Liu, X. Huang, M.-J. Cheng, R. J. Nielsen, W. A. Goddard III, J. T. Groves, Science 2012, 337, 1322–1325;
- 2cT. Taguchi, R. Gupta, B. Lassalle-Kaiser, D. W. Boyce, V. K. Yachandra, W. B. Tolman, J. Yano, M. Hendrich, A. S. Borovik, J. Am. Chem. Soc. 2012, 134, 1996–1999;
- 2dD. F. Leto, R. Ingram, V. W. Day, T. A. Jackson, Chem. Commun. 2013, 49, 5378–5380;
- 2eH. M. Neu, T. Yang, R. A. Baglia, T. H. Yosca, M. T. Green, M. G. Quesne, S. P. de Visser, D. P. Goldberg, J. Am. Chem. Soc. 2014, 136, 13845–13852;
- 2fJ. Chen, Y.-M. Lee, K. M. Davis, X. Wu, M. S. Seo, K.-B. Cho, H. Yoon, Y. J. Park, S. Fukuzumi, Y. N. Pushkar, W. Nam, J. Am. Chem. Soc. 2013, 135, 6388–6391;
- 2gS. D. Hicks, D. Kim, S. Xiong, G. A. Medvedev, J. Caruthers, S. Hong, W. Nam, M. M. Abu-Omar, J. Am. Chem. Soc. 2014, 136, 3680–3686.
- 3
- 3aM. Costas, L. Que, Jr., Angew. Chem. Int. Ed. 2002, 41, 2179–2181;
10.1002/1521-3773(20020617)41:12<2179::AID-ANIE2179>3.0.CO;2-F CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 2283–2285;
- 3bS. Hong, Y.-M. Lee, K.-B. Cho, K. Sundaravel, J. Cho, M. J. Kim, W. Shin, W. Nam, J. Am. Chem. Soc. 2011, 133, 11876–11879;
- 3cD. Wang, K. Ray, M. J. Collins, E. R. Farquhar, J. R. Frisch, L. Gömez, T. A. Jackson, M. Kerscher, A. Waleska, P. Comba, M. Costas, L. Que, Jr., Chem. Sci. 2013, 4, 282–291.
- 4
- 4aS. Romain, L. Vigara, A. Llobet, Acc. Chem. Res. 2009, 42, 1944–1953;
- 4bC.-M. Che, V. W.-W. Yam, T. C. W. Mak, J. Am. Chem. Soc. 1990, 112, 2284–2291;
- 4cY. Hirai, T. Kojima, Y. Mizutani, Y. Shiota, K. Yoshizawa, S. Fukuzumi, Angew. Chem. Int. Ed. 2008, 47, 5772–5776; Angew. Chem. 2008, 120, 5856–5860;
- 4dA. Sartorel, M. Carraro, G. Scorrano, R. De Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard, M. Bonchio, J. Am. Chem. Soc. 2008, 130, 5006–5007;
- 4eY. V. Geletii, B. Botar, P. Kgerler, D. A. Hillesheim, D. G. Musaev, C. L. Hill, Angew. Chem. Int. Ed. 2008, 47, 3896–3899; Angew. Chem. 2008, 120, 3960–3963.
- 5
- 5aY.-M. Lee, S. N. Dhuri, S. C. Sawant, J. Cho, M. Kubo, T. Ogura, S. Fukuzumi, W. Nam, Angew. Chem. Int. Ed. 2009, 48, 1803–1806; Angew. Chem. 2009, 121, 1835–1838.
- 6
- 6aP. Comba, M. Kerscher, W. Schiek, Prog. Inorg. Chem. 2007, 55, 613–704;
- 6bP. Comba in Molecular Catalysis (Eds.: ), Wiley-VCH, Weinheim, 2014, pp. 123–145.
- 7M. Bukowski, P. Comba, C. Limberg, M. Merz, L. Que, Jr., T. Wistuba, Angew. Chem. Int. Ed. 2004, 43, 1283–1287; Angew. Chem. 2004, 116, 1303–1307.
- 8
- 8aP. Comba, A. Lienke, Inorg. Chem. 2001, 40, 5206–5209;
- 8bA. E. Anastasi, P. Comba, J. McGrady, A. Lienke, H. Rohwer, Inorg. Chem. 2007, 46, 6420–6426;
- 8cP. Comba, B. Kanellakopulos, C. Katsichtis, A. Lienke, H. Pritzkow, F. Rominger, J. Chem. Soc. Dalton Trans. 1998, 3997–4001.
- 9
- 9aY. Goto, T. Matsui, S.-I. Ozaki, Y. Watanabe, S. Fukuzumi, J. Am. Chem. Soc. 1999, 121, 9497–9502;
- 9bJ. Park, Y. Morimoto, Y.-M. Lee, W. Nam, S. Fukuzumi, J. Am. Chem. Soc. 2011, 133, 5236–5239;
- 9cP. Comba, S. Fukuzumi, H. Kotani, S. Wunderlich, Angew. Chem. Int. Ed. 2010, 49, 2622–2625; Angew. Chem. 2010, 122, 2679–2682;
- 9dA. K. Vardhaman, P. Barman, S. Kumar, C. V. Sastri, D. Kumar, S. P. de Visser, Angew. Chem. Int. Ed. 2013, 52, 12288–12292; Angew. Chem. 2013, 125, 12514–12518.
- 10
- 10aI. J. Rhile, J. M. Mayer, J. Am. Chem. Soc. 2004, 126, 12718–12719;
- 10bD. T. Y. Yiu, M. F. W. Lee, W. W. Y. Lam, T.-C. Lau, Inorg. Chem. 2003, 42, 1225–1232.
- 11A. Habibi-Yangjeh, M. Danandeh-Jenagharad, M. Nooshyar, J. Mol. Model. 2006, 12, 338–347.
- 12D. E. Lansky, D. P. Goldberg, Inorg. Chem. 2006, 45, 5119–5125.
- 13M. Lucarini, P. Pedrielli, G. F. Pedulli, S. Cabiddu, C. Fattuoni, J. Org. Chem. 1996, 61, 9259–9263.
- 14C. V. Sastri, L. Lee, K. Oh, Y. J. Lee, J. Lee, T. A. Jackson, K. Ray, H. Hirao, W. Shin, J. A. Halfen, J. Kim, L. Que, Jr., S. Shaik, W. Nam, Proc. Natl. Acad. Sci. USA 2007, 104, 19181–19186.
- 15P. Mulder, O. W. Saastad, D. Griller, J. Am. Chem. Soc. 1988, 110, 4090–4092.
- 16
- 16aM. R. Bukowski, P. Comba, A. Lienke, C. Limberg, C. Lopez de Laorden, R. Mas-Ballesté, M. Merz, L. Que, Jr., Angew. Chem. Int. Ed. 2006, 45, 3446–3449; Angew. Chem. 2006, 118, 3524–3528;
- 16bJ. Madhavan, P. Comba, M. Maurer, P. Vadivelu, V. Venuvanalingham, Dalton Trans. 2011, 40, 11276–11281;
- 16cP. Comba, M. Maurer, P. Vadivelu, Inorg. Chem. 2009, 48, 10389–10396.
- 17A. Bentz, P. Comba, R. J. Deeth, M. Kerscher, B. Seibold, H. Wadepohl, Inorg. Chem. 2008, 47, 9518–9527.
- 18aA. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835; F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065;
- 18bP. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299–310;
- 18cJ. E. Bol, C. Buning, P. Comba, J. Reedijk, M. Ströhle, J. Comput. Chem. 1998, 19, 512–523.
- 19
- 19aE. I. Solomon, S. D. Wong, L. V. Liu, A. Decker, M. S. Chow, Curr. Opin. Chem. Biol. 2010, 13, 99–113;
- 19bS. Ye, F. Neese, Proc. Natl. Acad. Sci. USA 2011, 108, 1228–1233;
- 19cC. Geng, S. Ye, F. Neese, Angew. Chem. Int. Ed. 2010, 49, 5717–5720; Angew. Chem. 2010, 122, 5853–5856;
- 19dS. Ye, C.-Y. Geng, S. Shaik, F. Neese, Phys. Chem. Chem. Phys. 2013, 15, 8017–8030;
- 19eM. Srnec, S. D. Wong, E. I. Solomon, Dalton Trans. 2014, 43, 17567–17577.
- 20We have not completed a computational analysis for the sulfoxidation reaction. From published work on the iron-based systems it emerges, however, that depending on the isomer (oxo group trans to either N3 or N7), the lowest energy transition state (S=2) has either linear or bent structures,[16b] thus suggesting that in the iron system, there might be changes in structure and concomitantly in reactivity resulting from subtle changes in the steric demand of the substrate.
- 21S. P. de Visser, M. G. Quesne, B. Martin, P. Comba, U. Ryde, Chem. Commun. 2014, 50, 412–414.
- 22K.-B. Cho, S. Shaik, W. Nam, J. Phys. Chem. Lett. 2012, 3, 2851–2856.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.