Self-Assembly of a Giant Molecular Solomon Link from 30 Subcomponents†
Dr. Clément Schouwey
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorDr. Julian J. Holstein
Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX (UK)
Current address: GZG, Abteilung Kristallographie, Georg-August-Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Rosario Scopelliti
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorKonstantin O. Zhurov
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorDr. Konstantin O. Nagornov
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorProf. Yury O. Tsybin
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorDr. Oliver S. Smart
Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX (UK)
Search for more papers by this authorDr. Gérard Bricogne
Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX (UK)
Search for more papers by this authorCorresponding Author
Prof. Kay Severin
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)Search for more papers by this authorDr. Clément Schouwey
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorDr. Julian J. Holstein
Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX (UK)
Current address: GZG, Abteilung Kristallographie, Georg-August-Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen (Germany)
Search for more papers by this authorDr. Rosario Scopelliti
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorKonstantin O. Zhurov
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorDr. Konstantin O. Nagornov
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorProf. Yury O. Tsybin
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Search for more papers by this authorDr. Oliver S. Smart
Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX (UK)
Search for more papers by this authorDr. Gérard Bricogne
Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX (UK)
Search for more papers by this authorCorresponding Author
Prof. Kay Severin
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)Search for more papers by this authorThis work was supported by funding from the Swiss National Science Foundation, a Marie Curie fellowship for J.J.H. (ITN-2010-264645), and by the EPFL. We thank Dr. Pascal Miéville for his help with DOSY experiments, and Prof. Dr. Anthony L. Spek for providing updated CHECKCIF routines to handle structures of the Solomon link’s size.
Abstract
The synthesis of topologically complex structures, such as links and knots, is one of the current challenges in supramolecular chemistry. The so-called Solomon link consists of two doubly interlocked rings. Despite being a rather simple link from a topological point of view, only few molecular versions of this link have been described so far. Here, we report the quantitative synthesis of a giant molecular Solomon link from 30 subcomponents. The highly charged structure is formed by assembly of 12 cis-blocked Pt2+ complexes, six Cu+ ions, and 12 rigid N-donor ligands. Each of the two interlocked rings is composed of six repeating Pt(ligand) units, while the six Cu+ ions connect the two rings. With a molecular weight of nearly 12 kDa and a diameter of 44.2 Å, this complex is the largest non-DNA-based Solomon link described so far. Furthermore, it represents a molecular version of a “stick link”.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201407144_sm_miscellaneous_information.pdf5.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Hoste in Handbook of Knot Theory (Eds.: ), Elsevier Science Amsterdam, 2005, pp. 209–232.
10.1016/B978-044451452-3/50006-X Google Scholar
- 2
- 2aS. Rankin, O. Flint, J. Schermann, J. Knot Theory Ramifications 2004, 13, 57–100;
- 2bS. Rankin, O. Flint, J. Schermann, J. Knot Theory Ramifications 2004, 13, 101–149.
- 3T. Prakasam, M. Lusi, M. Elhabiri, C. Platas-Iglesias, J.-C. Olsen, Z. Asfari, S. Cianférani-Sanglier, F. Debaene, L. J. Charbonnière, A. Trabosi, Angew. Chem. Int. Ed. 2013, 52, 9956–9960; Angew. Chem. 2013, 125, 10140–10144.
- 4
- 4aN. Ponnuswamy, F. B. L. Cougnon, J. M. Clough, G. D. Pantoş, J. K. M. Sanders, Science 2012, 338, 783–785;
- 4bP. E. Barran, H. L. Cole, S. M. Godup, D. A. Leigh, P. R. McGonial, M. D. Symes, J. Wu, M. Zengerle, Angew. Chem. Int. Ed. 2011, 50, 12280–12284; Angew. Chem. 2011, 123, 12488–12492;
- 4cJ. Guo, P. C. Mayers, G. A. Breault, C. A. Hunter, Nat. Chem. 2010, 2, 218–222;
- 4dM. Feigel, R. Ladberg, S. Engels, R. Herbst-Irmer, R. Fröhlich, Angew. Chem. Int. Ed. 2006, 45, 5698–5702; Angew. Chem. 2006, 118, 5827–5831;
- 4eL.-E. Perret-Aebi, A. von Zelewsky, C. Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. Int. Ed. 2004, 43, 4482–4485; Angew. Chem. 2004, 116, 4582–4585;
- 4fO. Safarowsky, M. Nieger, R. Fröhlich, F. Vögtle, Angew. Chem. Int. Ed. 2000, 39, 1616–1618;
10.1002/(SICI)1521-3773(20000502)39:9<1616::AID-ANIE1616>3.0.CO;2-Y CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 1699–1701;
- 4gG. Rapenne, C. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1999, 121, 994–1001;
- 4hC. Dietrich-Buchecker, G. Rapenne, Chem. Commun. 1997, 2053–2054;
- 4iP. R. Ashton, O. A. Matthews, S. Menzer, F. M. Raymo, N. Spencer, J. F. Stoddart, D. J. Williams, Liebigs Ann. 1997, 2485–2494;
- 4jC. Dietrich-Buchecker, J.-P. Sauvage, A. D. Cian, J. Fischer, J. Chem. Soc. Chem. Commun. 1994, 2231–2232.
- 5R. F. Carina, C. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1996, 118, 9110–9116.
- 6
- 6aJ.-F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen, D. Schultz, J. Am. Chem. Soc. 2012, 134, 9488–9497;
- 6bJ.-F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen, D. Schultz, Nat. Chem. 2012, 4, 15–20.
- 7For reviews see:
- 7aJ.-F. Ayme, J. E. Beves, C. J. Campbell, D. A. Leigh, Chem. Soc. Rev. 2013, 42, 1700–1712;
- 7bJ.-C. Chambron, J.-P. Sauvage, New J. Chem. 2013, 37, 49–57;
- 7cR. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464;
- 7dJ. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem. Int. Ed. 2011, 50, 9260–9327; Angew. Chem. 2011, 123, 9428–9499.
- 8
- 8aS.-L. Huang, Y.-J. Lin, T. S. A. Hor, G.-J. Jin, J. Am. Chem. Soc. 2013, 135, 8125–8128;
- 8bC. D. Pentecost, A. J. Peters, K. S. Chichak, G. W. V. Cave, S. J. Cantrill, J. F. Stoddart, Angew. Chem. Int. Ed. 2006, 45, 4099–4104; Angew. Chem. 2006, 118, 4205–4210;
- 8cK. S. Chichak, A. J. Peters, S. J. Cantrill, J. F. Stoddart, J. Org. Chem. 2005, 70, 7956–7962;
- 8dK. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V. Cave, J. L. Atwood, J. F. Stoddart, Science 2004, 304, 1308–1312.
- 9
- 9aN. Ponnuswamy, F. B. L. Cougnon, G. D. Pantos, J. K. M. Sanders, J. Am. Chem. Soc. 2014, 136, 8243–8261;
- 9bJ. E. Beves, C. J. Campbell, D. A. Leigh, R. G. Pritchard, Angew. Chem. Int. Ed. 2013, 52, 6464–6467; Angew. Chem. 2013, 125, 6592–6595;
- 9cC. Peinador, V. Blanco, J. M. Quintela, J. Am. Chem. Soc. 2009, 131, 920–921;
- 9dC. D. Pentecost, K. S. Chichak, A. J. Peters, G. W. V. Cave, S. J. Cantrill, J. F. Stoddart, Angew. Chem. Int. Ed. 2007, 46, 218–222; Angew. Chem. 2007, 119, 222–226;
- 9eC. P. McArdle, J. J. Vittal, R. J. Puddephatt, Angew. Chem. Int. Ed. 2000, 39, 3819–3822;
10.1002/1521-3773(20001103)39:21<3819::AID-ANIE3819>3.0.CO;2-6 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 3977–3980;
- 9fC. Dietrich-Buchecker, J.-P. Sauvage, Chem. Commun. 1999, 615–616;
- 9gF. Ibukuro, M. Fujita, K. Yamaguchi, J.-P. Sauvage, J. Am. Chem. Soc. 1999, 121, 11014–11015;
- 9hJ. F. Nierengarten, C. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1994, 116, 375–376.
- 10M. N. Saha, S. De, S. Pramanik, M. Schmittel, Chem. Soc. Rev. 2013, 42, 6860–6909.
- 11
- 11aR. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810–6918;
- 11bF. Würthner, C.-C. You, C. R. Saha-Möller, Chem. Soc. Rev. 2004, 33, 133–146.
- 12H. T. Baytekin, M. Sahre, A. Rang, M. Engeser, A. Schulz, C. A. Schalley, Small 2008, 4, 1823–1834.
- 13K.-M. Park, S.-Y. Kim, J. H, D. Whang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc. 2002, 124, 2140–2147.
- 14S.-S. Sun, C. L. Stern, S. T. Nguyen, J. T. Hupp, J. Am. Chem. Soc. 2004, 126, 6314–6326.
- 15
- 15aT. Weilandt, R. W. Troff, H. Saxell, K. Rissanen, C. A. Schalley, Inorg. Chem. 2008, 47, 7588–7598;
- 15bM. Ferrer, M. Mounir, O. Rossell, E. Ruiz, M. A. Maestro, Inorg. Chem. 2003, 42, 5890–5899;
- 15cM. Schweiger, S. R. Seidel, A. M. Arif, P. J. Stang, Inorg. Chem. 2002, 41, 2556–2559;
- 15dA. Sautter, D. G. Schmid, G. Jung, F. Würthner, J. Am. Chem. Soc. 2001, 123, 5424–5430;
- 15eM. Fujita, O. Sasaki, T. Mitsahashi, T. Fujita, J. Yazaki, K. Yamaguchi, Chem. Commun. 1996, 1535–1536.
- 16M. Beyler, V. Heitz, J.-P. Sauvage, Chem. Commun. 2008, 5396–5398.
- 17B. X. Colasson, J.-P. Sauvage, Inorg. Chem. 2004, 43, 1895–1901.
- 18M. Beyler, V. Heitz, J.-P. Sauvage, New J. Chem. 2010, 34, 1825–1829.
- 19J. R. Price, J. K. Clegg, R. R. Fenton, L. F. Lindoy, J. C. McMurtrie, G. V. Meehan, A. Parkin, D. Perkins, P. Turner, Aust. J. Chem. 2009, 62, 1014–1019.
- 20H. Ben Hamidane, A. Vorobyev, Y. O. Tsybin, Eur. J. Mass Spectrom. 2011, 17, 321–331.
- 21L. Patiny, A. Borel, J. Chem. Inf. Model. 2013, 53, 1223–1228.
- 22CCDC 1001443 (3) and 1001444 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 23P. J. Stang, D. H. Cao, S. Saito, A. M. Arif, J. Am. Chem. Soc. 1995, 117, 6273–6283.
- 24T. K. Ronson, C. Giri, N. K. Beyeh, A. Minkkinen, F. Topić, J. J. Holstein, K. Rissanen, J. Nitschke, Chem. Eur. J. 2013, 19, 3374–3382.
- 25M. Pascu, M. Marmier, C. Schouwey, R. Scopelliti, J. J. Holstein, G. Bricogne, K. Severin, Chem. Eur. J. 2014, 20, 5592–5600.
- 26http://grade.globalphasing.org.
- 27A. Thorn, B. Dittrich, G. M. Sheldrick, Acta Crystallogr. Sect. A 2012, 68, 448–451.
- 28O. S. Smart, T. O. Womack, C. Flensburg, P. Keller, W. Paciorek, A. Sharff, C. Vonrhein, G. Bricogne, Acta Crystallogr. Sect. D 2012, 68, 368–380.
- 29C. Liang, K. Mislow, J. Math. Chem. 1995, 18, 1–24.
- 30Since complex 5 is formed under thermodynamic control, it appears unlikely that Cu+ can be removed without structural rearrangement.
- 31For DNA-based knots and links, see:
- 31aT. Ciengshin, R. Sha, N. C. Seeman, Angew. Chem. Int. Ed. 2011, 50, 4419–4422; Angew. Chem. 2011, 123, 4511–4514;
- 31bN. C. Seeman, Acc. Chem. Res. 1997, 30, 357–363.
- 32For bent ligands containing a central N,N′-binding site and terminal pyridyl groups see Ref. [9g] and:
- 32aM. Schmittel, B. He, J. Fan, J. W. Bats, M. Engeser, M. Schlosser, H.-J. Deiseroth, Inorg. Chem. 2009, 48, 8192–8200;
- 32bO. V. Dolomanov, A. J. Blake, N. R. Champness, M. Schröder, C. Wilson, Chem. Commun. 2003, 682–683.
- 33E. A. Elrifai, Chaos Solitons Fractals 2006, 27, 233–236.
- 34http://www.colab.sfu.ca/KnotPlot/sticknumbers/index.html.
- 35http://www.colab.sfu.ca/KnotPlot/sticknumbers/links/.
- 36E. J. Rawdon, R. G. Scharein, Contemp. Math. 2002, 304, 55–75.
10.1090/conm/304/05184 Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.