An Above-Room-Temperature Ferroelectric Organo–Metal Halide Perovskite: (3-Pyrrolinium)(CdCl3)†
Dr. Heng-Yun Ye
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)
Search for more papers by this authorDr. Yi Zhang
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)
Search for more papers by this authorDr. Da-Wei Fu
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Ren-Gen Xiong
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)Search for more papers by this authorDr. Heng-Yun Ye
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)
Search for more papers by this authorDr. Yi Zhang
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)
Search for more papers by this authorDr. Da-Wei Fu
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Ren-Gen Xiong
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)
Ordered Matter Science Research Center, Southeast University, Nanjing 211189 (P. R. China)Search for more papers by this authorThis work was supported by 973 project (2014CB932103) and the National Natural Science Foundation of China (21290172, 91222101 and 21371032). X.R.G. sincerely thanks Professors Li Sheng-Hui, Chen Bin, and Yuan Guo-Liang for their help with the measurement of solid-state NMR experiments, APV effects, and PFM images, respectively.
Abstract
Hybrid organo–metal halide perovskite materials, such as CH3NH3PbI3, have been shown to be some of the most competitive candidates for absorber materials in photovoltaic (PV) applications. However, their potential has not been completely developed, because a photovoltaic effect with an anomalously large voltage can be achieved only in a ferroelectric phase, while these materials are probably ferroelectric only at temperatures below 180 K. A new hexagonal stacking perovskite-type complex (3-pyrrolinium)(CdCl3) exhibits above-room-temperature ferroelectricity with a Curie temperature Tc=316 K and a spontaneous polarization Ps=5.1 μC cm−2. The material also exhibits antiparallel 180° domains which are related to the anomalous photovoltaic effect. The open-circuit photovoltage for a 1 mm-thick bulky crystal reaches 32 V. This finding could provide a new approach to develop solar cells based on organo–metal halide perovskites in photovoltaic research.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201406810_sm_miscellaneous_information.pdf1.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. E. Lines, A. M. Glass, Principles and Application of Ferroelectrics and Related Materials, Oxford University Press, Oxford, 1977.
- 2Y. Inoue, K. Sato, K. Sato, H. Miyama, J. Phys. Chem. 1986, 90, 2809–2810.
- 3
- 3aA. Lempicki, Phys. Rev. 1959, 113, 1204–1209;
- 3bL. Pensak, Phys. Rev. 1958, 109, 601;
- 3cP. S. Brody, Solid State Commun. 1973, 12, 673–676.
- 4
- 4aJ. Kreisel, M. Alexe, P. A. Thomas, Nat. Mater. 2012, 11, 260;
- 4bS. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, R. Ramesh, Nat. Nanotechnol. 2010, 5, 143–147;
- 4cM. Alexe, D. Hesse, Nat. Commun. 2011, 2, 256.
- 5
- 5aA. M. Glass, D. von der Linde, T. J. Negran, Appl. Phys. Lett. 1974, 25, 233–235;
- 5bA. M. Glass, D. von der Linde, D. H. Auston, T. J. Negran, J. Electron. Mater. 1975, 4, 915–943;
- 5cP. S. Brody, F. Crowne, J. Electron. Mater. 1975, 4, 955–971;
- 5dV. M. Fridkin, B. N. Popov, Sov. Phys. Usp. 1978, 21, 981–991.
10.1070/PU1978v021n12ABEH005722 Google Scholar
- 6S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y. H. Chu, C. H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager, R. Ramesh, Appl. Phys. Lett. 2009, 95, 062909.
- 7
- 7aM. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643–647;
- 7bD. J. Norris, E. S. Aydil, Science 2013, 338, 625–626;
- 7cS. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341–344;
- 7dG. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344–347;
- 7eM. Z. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395–398;
- 7fJ. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316–319.
- 8
- 8aM. A. Loi, J. C. Hummelen, Nat. Mater. 2013, 12, 1087–1089;
- 8bP. V. Kamat, J. Am. Chem. Soc. 2014, 136, 3713–3714;
- 8cL. Etgar, P. Gao, Z.-S. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2012, 134, 17396–17399;
- 8dL. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto, J. Am. Chem. Soc. 2014, 136, 850–853;
- 8eJ. A. Christians, R. C. M. Fung, P. V. Kamat, J. Am. Chem. Soc. 2014, 136, 758–764;
- 8fN. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. 2014, 53, 3151–3157; Angew. Chem. 2014, 126, 3215–3221;
- 8gB. V. Lotsch, Angew. Chem. Int. Ed. 2014, 53, 635–637; Angew. Chem. 2014, 126, 647–649;
- 8hS. Kazim, M. K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 2014, 53, 2812–2824; Angew. Chem. 2014, 126, 2854–2867;
- 8iB. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, J. Manca, H.-G. Boyen, Adv. Mater. 2014, 26, 2041–2046;
- 8jJ.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Adv. Mater. 2013, 25, 3727–3732;
- 8kC. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584–1589.
- 9N. Onodayamamuro, T. Matsuo, H. Suga, J. Phys. Chem. Solids 1992, 53, 935–939.
- 10J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14, 2584–2590.
- 11
- 11aD. Di Sante, A. Stroppa, P. Jain, S. Picozzi, J. Am. Chem. Soc. 2013, 135, 18126–18130;
- 11bG.-C. Xu, X.-M. Ma, L. Zhang, Z.-M. Wang, S. Gao, J. Am. Chem. Soc. 2010, 132, 9588–9592;
- 11cP. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby, N. S. Dalal, H. W. Kroto, A. K. Cheetham, J. Am. Chem. Soc. 2009, 131, 13625–13627;
- 11dG.-C. Xu, W. Zhang, X.-M. Ma, Y.-H. Chen, L. Zhang, H.-L. Cai, Z.-M. Wang, R.-G. Xiong, S. Gao, J. Am. Chem. Soc. 2011, 133, 14948–14951;
- 11eD.-W. Fu, W. Zhang, H.-L. Cai, Y. Zhang, J.-Z. Ge, R.-G. Xiong, Angew. Chem. Int. Ed. 2011, 50, 11947–11951; Angew. Chem. 2011, 123, 12153–12157;
- 11fW. Zhang, R.-G. Xiong, Chem. Rev. 2012, 112, 1163–1195.
- 12
- 12aK. Gesi, J. Phys. Soc. Jpn. 1990, 59, 432–434;
- 12bY. Zhang, H.-Y. Ye, W. Zhang, R.-G. Xiong, Inorg. Chem. Front. 2014, 1, 118–123.
- 13Crystal data for 1 at 346 K: (C4H8N)(CdCl3), Mr=288.86, orthorhombic, Cmcm, a=7.434(4), b=17.441(9), c=6.707(3) Å, V=869.6(7) Å3, Z=4, ρcald=2.206 g cm−3, R1 (I>2σ(I))=0.0237, wR2 (all data)=0.0616, m=3.351 mm−1, S=1.144. At 293 K: orthorhombic, Cmc21, a=7.446(17), b=17.43(4), c=6.764(15) Å, V=878(3) Å3, Z=4, ρcald=2.185 g cm−3, R1 (I>2σ(I))=0.0383, wR2 (all data)=0.0961, m=3.318 mm−1, S=1.089. At 273 K: orthorhombic, Cmc21, a=7.402(7), b=17.383(16), c=6.699(7) Å, V=861.9(14) Å3, Z=4, ρcald=2.226 g cm−3, R1 (I>2σ(I))=0.0245, wR2 (all data)=0.0959, m=3.881 mm−1, S=1.117. At 253 K: orthorhombic, Cmc21, a=7.387(7), b=17.352(16), c=6.688(7) Å, V=857.2(14) Å3, Z=4, ρcald=2.238 g cm−3, R1 (I>2σ(I))=0.0195, wR2 (all data)=0.05, m=3.399 mm−1, S=1.053. At 233 K: orthorhombic, Cmc21, a=7.381(7), b=17.340(17), c=6.686(7) Å, V=855.7(15) Å3, Z=4, ρcald=2.242 g cm−3, R1 (I>2σ(I))=0.0248, wR2 (all data)=0.0635, m=3.405 mm−1, S=1.084. At 213 K: orthorhombic, Cmc21, a=7.367(6), b=17.319(13), c=6.678(5) Å, V=852.0(12) Å3, Z=4, ρcald=2.252 g cm−3, R1 (I>2σ(I))=0.0196, wR2 (all data)=0.0384, m=3.420 mm−1, S=1.003. At 193 K: orthorhombic, Cmc21, a=7.366(7), b=17.313(16), c=6.679(7) Å, V=851.7(14) Å3, Z=4, ρcald=2.253 g cm−3, R1 (I>2σ(I))=0.0193, wR2 (all data)=0.0412, m=3.421 mm−1, S=1.021.
- 14
- 14aL. Katz, R. Ward, Inorg. Chem. 1964, 3, 205–211;
- 14bJ. Darriet, M. A. Subramanian, J. Mater. Chem. 1995, 5, 543–552.
- 15
- 15aN. Onoda-Yamamuro, T. Matsuo, H. Suga, J. Chem. Thermodyn. 1991, 23, 987–999;
- 15bK. Yamada, Y. Kuranaga, K. Ueda, S. Goto, T. Okuda, Y. Furrakawa, Bull. Chem. Soc. Jpn. 1998, 71, 127–134;
- 15cY. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura, Discuss. Faraday Soc. 2011, 40, 5563–5568.
- 16J. J. Lander, Acta Crystallogr. 1951, 4, 148–156.
- 17B. Morosin, Acta Crystallogr. Sect. B 1972, 28, 2303–2305.
- 18R. Puget, M. Jannin, C. D. Brauer, R. Perret, Acta Crystallogr. Sect. C 1991, 47, 1803–1805.
- 19
- 19aD. A. Draegert, S. Singh, Solid State Commun. 1971, 9, 595–597;
- 19b Physics of Ferroelectrics—A Modern Perspective, (Eds.: ), Springer, Berlin, 2007.
- 20aS. Horiuchi, R. Kumai, Y. Tokura, Angew. Chem. Int. Ed. 2007, 46, 3497–3501; Angew. Chem. 2007, 119, 3567–3571;
- 20bS. Horiuchi, R. Kumai, Y. Tokunaga, Y. Tokura, J. Am. Chem. Soc. 2008, 130, 13382–13391;
- 20cS. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2005, 4, 163–166;
- 20dS. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Nat. Commun. 2012, 3, 1308;
- 20eS. Horiuchi, S. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 2010, 463, 789–793;
- 20fF. Kagawa, S. Horiuchi, N. Minami, S. Ishibashi, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Nano Lett. 2014, 14, 239–243;
- 20gA. S. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. Jackson Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature 2012, 488, 485–489;
- 20hD.-W. Fu, H.-L. Cai, Y. M. Liu, Q. Ye, W. Zhang, Y. Zhang, X.-Y. Chen, G. Giovannetti, M. Capone, J. Y. Li, R.-G. Xiong, Science 2013, 339, 425–428.
- 21T. Furukawa, Phase Transitions 1989, 18, 143–211.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.