Experimental and Computational Studies on the Reactivity of a Terminal Thorium Imidometallocene towards Organic Azides and Diazoalkanes†
Dr. Wenshan Ren
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)
Search for more papers by this authorEnwei Zhou
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Search for more papers by this authorBo Fang
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Search for more papers by this authorDr. Guohua Hou
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Search for more papers by this authorCorresponding Author
Prof. Guofu Zi
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Guofu Zi, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
De-Cai Fang, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Marc D. Walter, Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
Search for more papers by this authorCorresponding Author
Prof. De-Cai Fang
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Guofu Zi, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
De-Cai Fang, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Marc D. Walter, Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
Search for more papers by this authorCorresponding Author
Dr. Marc D. Walter
Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
Guofu Zi, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
De-Cai Fang, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Marc D. Walter, Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
Search for more papers by this authorDr. Wenshan Ren
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)
Search for more papers by this authorEnwei Zhou
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Search for more papers by this authorBo Fang
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Search for more papers by this authorDr. Guohua Hou
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Search for more papers by this authorCorresponding Author
Prof. Guofu Zi
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Guofu Zi, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
De-Cai Fang, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Marc D. Walter, Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
Search for more papers by this authorCorresponding Author
Prof. De-Cai Fang
Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Guofu Zi, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
De-Cai Fang, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Marc D. Walter, Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
Search for more papers by this authorCorresponding Author
Dr. Marc D. Walter
Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
Guofu Zi, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
De-Cai Fang, Department of Chemistry, Beijing Normal University, Beijing 100875 (China)
Marc D. Walter, Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
Search for more papers by this authorThis research was supported by the National Natural Science Foundation of China (Grant No. 21472013, 21172022, 21272026, 21302155, and 21373030), and by the Deutsche Forschungsgemeinschaft (DFG) through the Emmy Noether Program (WA 2513/2).
Abstract
The reaction of the base-free terminal thorium imido complex [{η5-1,2,4-(Me3C)3C5H2}2ThN(p-tolyl)] (1) with p-azidotoluene yielded irreversibly the tetraazametallacyclopentene [{η5-1,2,4-(Me3C)3C5H2}2Th{N(p-tolyl)NNN(p-tolyl)}] (2), whereas the bridging imido complex [{[η5-1,2,4-(Me3C)3C5H2]Th(N3)2}2{μ-N(p-tolyl)}2][(n-C4H9)4N]2 (3) was isolated from the reaction of 1 with [(n-C4H9)4N]N3. Unexpectedly, upon the treatment of 1 with 9-diazofluorene, the NN bond was cleaved, an N atom was transferred, and the η2-diazenido iminato complex [{η5-1,2,4-(Me3C)3C5H2}2Th{η2-[NN(p-tolyl)]}{N(9-C13H8)}] (4) was formed. In contrast, the reaction of 1 with Me3SiCHN2 gave the nitrilimido complex [{η5-1,2,4-(Me3C)3C5H2}2Th{NH(p-tolyl)}{N2CSiMe3}] (5), which slowly converted into [{η5-1,2,4-(Me3C)3C5H2}{η5:κ-N-1,2-(Me3C)2-4-CMe2(CH2NNCHSiMe3)C5H2}Th{NH(p-tolyl)}] (6) by intramolecular CH bond activation. The experimental results are complemented by density functional theory (DFT) studies.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201406191_sm_miscellaneous_information.pdf996.5 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews, see:
- 1aM. Ephritikhine, Dalton Trans. 2006, 2501–2516;
- 1bE. Barnea, M. S. Eisen, Coord. Chem. Rev. 2006, 250, 855–899;
- 1cA. R. Fox, S. C. Bart, K. Meyer, C. C. Cummins, Nature 2008, 455, 341–349;
- 1dT. Andrea, M. S. Eisen, Chem. Soc. Rev. 2008, 37, 550–567;
- 1eC. R. Graves, J. L. Kiplinger, Chem. Commun. 2009, 3831–3853;
- 1fT. W. Hayton, Dalton Trans. 2010, 39, 1145–1158;
- 1gP. L. Arnold, Chem. Commun. 2011, 47, 9005–9010;
- 1hT. W. Hayton, Chem. Commun. 2013, 49, 2956–2973;
- 1iT. W. Hayton, Nat. Chem. 2013, 5, 451–452;
- 1jW. Ren, N. Zhao, L. Chen, G. Zi, Chin. J. Org. Chem. 2013, 33, 771–779;
- 1kG. Zi, Sci. China Chem. 2014, 57, 1064–1072.
- 2For selected reports on uranium nonmetallocenes containing terminal imido groups, see:
- 2aC. J. Burns, W. H. Smith, J. C. Huffman, A. P. Sattelberger, J. Am. Chem. Soc. 1990, 112, 3237–3239;
- 2bD. R. Brown, R. G. Denning, Inorg. Chem. 1996, 35, 6158–6163;
- 2cP. Roussel, R. Boaretto, A. J. Kingsley, N. W. Alcock, P. Scott, J. Chem. Soc. Dalton Trans. 2002, 1423–1428;
- 2dI. Castro-Rodríguez, K. Olsen, P. Gantzel, K. Meyer, J. Am. Chem. Soc. 2003, 125, 4565–4571;
- 2eT. W. Hayton, J. M. Boncella, B. L. Scott, P. D. Palmer, E. R. Batista, P. J. Hay, Science 2005, 310, 1941–1943;
- 2fT. W. Hayton, J. M. Boncella, B. L. Scott, E. R. Batista, P. J. Hay, J. Am. Chem. Soc. 2006, 128, 10549–10559;
- 2gT. W. Hayton, J. M. Boncella, B. L. Scott, E. R. Batista, J. Am. Chem. Soc. 2006, 128, 12622–12623;
- 2hI. Castro-Rodriguez, H. Nakai, K. Meyer, Angew. Chem. 2006, 118, 2449–2452;
10.1002/ange.200501667 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 2389–2392;
- 2iL. P. Spencer, P. Yang, B. L. Scott, E. R. Batista, J. M. Boncella, J. Am. Chem. Soc. 2008, 130, 2930–2931;
- 2jS. C. Bart, C. Anthon, F. W. Heinemann, E. Bill, N. M. Edelstein, K. Meyer, J. Am. Chem. Soc. 2008, 130, 12536–12546;
- 2kL. P. Spencer, E. J. Schelter, P. Yang, R. L. Gdula, B. L. Scott, J. D. Thompson, J. L. Kiplinger, E. R. Batista, J. M. Boncella, Angew. Chem. 2009, 121, 3853–3856;
10.1002/ange.200806190 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 3795–3798;
- 2lL. P. Spencer, P. Yang, B. L. Scott, E. R. Batista, J. M. Boncella, Inorg. Chem. 2009, 48, 2693–2700;
- 2mL. P. Spencer, P. Yang, B. L. Scott, E. R. Batista, J. M. Boncella, Inorg. Chem. 2009, 48, 11615–11623;
- 2nT. Cantat, C. R. Graves, B. L. Scott, J. L. Kiplinger, Angew. Chem. 2009, 121, 3735–3738;
10.1002/ange.200806115 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 3681–3684;
- 2oD. L. Swartz II, L. P. Spencer, B. L. Scott, A. L. Odom, J. M. Boncella, Dalton Trans. 2010, 39, 6841–6846;
- 2pL. A. Seaman, S. Fortier, G. Wu, T. W. Hayton, Inorg. Chem. 2011, 50, 636–646;
- 2qR. E. Jilek, L. P. Spencer, D. L. Kuiper, B. L. Scott, U. J. Williams, J. M. Kikkawa, E. J. Schelter, J. M. Boncella, Inorg. Chem. 2011, 50, 4235–4237;
- 2rE. M. Matson, P. E. Fanwick, S. C. Bart, Eur. J. Inorg. Chem. 2012, 5471–5478;
- 2sE. M. Matson, M. G. Crestani, P. E. Fanwick, S. C. Bart, Dalton Trans. 2012, 41, 7952–7958;
- 2tO. P. Lam, S. M. Franke, H. Nakai, F. W. Heinemann, W. Hieringer, K. Meyer, Inorg. Chem. 2012, 51, 6190–6199;
- 2uC. Camp, J. Pécaut, M. Mazzanti, J. Am. Chem. Soc. 2013, 135, 12101–12111;
- 2vD. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Science 2012, 337, 717–720;
- 2wD. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Nat. Chem. 2013, 5, 482–488;
- 2xD. M. King, J. McMaster, F. Tuna, E. J. L. McInnes, W. Lewis, A. J. Blake, S. T. Liddle, J. Am. Chem. Soc. 2014, 136, 5619–5622.
- 3For selected reports about actinide metallocenes containing terminal imido groups, see:
- 3aR. E. Cramer, K. Panchanatheswaran, J. W. Gilje, J. Am. Chem. Soc. 1984, 106, 1853–1854;
- 3bJ. G. Brennan, R. A. Andersen, J. Am. Chem. Soc. 1985, 107, 514–516;
- 3cR. K. Rosen, R. A. Andersen, N. M. Edelstein, J. Am. Chem. Soc. 1990, 112, 4588–4590;
- 3dD. S. J. Arney, C. J. Burns, D. C. Smith, J. Am. Chem. Soc. 1992, 114, 10068–10069;
- 3eD. S. J. Arney, C. J. Burns, J. Am. Chem. Soc. 1993, 115, 9840–9841;
- 3fD. S. J. Arney, C. J. Burns, J. Am. Chem. Soc. 1995, 117, 9448–9460;
- 3gT. Straub, W. Frank, G. J. Reiss, M. S. Eisen, J. Chem. Soc. Dalton Trans. 1996, 2541–2546;
- 3hB. P. Warner, B. L. Scott, C. J. Burns, Angew. Chem. 1998, 110, 1005–1007;
10.1002/(SICI)1521-3757(19980403)110:7<1005::AID-ANGE1005>3.0.CO;2-Q Google ScholarAngew. Chem. Int. Ed. 1998, 37, 959–960;10.1002/(SICI)1521-3773(19980420)37:7<959::AID-ANIE959>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 3iR. G. Peters, B. P. Warner, B. L. Scott, C. J. Burns, Organometallics 1999, 18, 2587–2589;
- 3jT. Straub, A. Haskel, T. G. Neyroud, M. Kapon, M. Botoshansky, M. S. Eisen, Organometallics 2001, 20, 5017–5035;
- 3kJ. L. Kiplinger, D. E. Morris, B. L. Scott, C. J. Burns, Chem. Commun. 2002, 30–31;
- 3lW. J. Evans, S. A. Kozimor, J. W. Ziller, Chem. Commun. 2005, 4681–4683;
- 3mG. Zi, L. Jia, E. L. Werkema, M. D. Walter, J. P. Gottfriedsen, R. A. Andersen, Organometallics 2005, 24, 4251–4262;
- 3nG. Zi, L. L. Blosch, L. Jia, R. A. Andersen, Organometallics 2005, 24, 4602–4612;
- 3oC. R. Graves, B. L. Scott, D. E. Morris, J. L. Kiplinger, J. Am. Chem. Soc. 2007, 129, 11914–11915;
- 3pC. R. Graves, P. Yang, S. A. Kozimor, A. E. Vaughn, D. L. Clark, S. D. Conradson, E. J. Schelter, B. L. Scott, J. D. Thompson, P. J. Hay, D. E. Morris, J. L. Kiplinger, J. Am. Chem. Soc. 2008, 130, 5272–5285;
- 3qC. R. Graves, B. L. Scott, D. E. Morris, J. L. Kiplinger, Organometallics 2008, 27, 3335–3337;
- 3rC. R. Graves, A. E. Vaughn, E. J. Schelter, B. L. Scott, J. D. Thompson, D. E. Morris, J. L. Kiplinger, Inorg. Chem. 2008, 47, 11879–11891;
- 3sL. P. Spencer, R. L. Gdula, T. W. Hayton, B. L. Scott, J. M. Boncella, Chem. Commun. 2008, 4986–4988;
- 3tW. J. Evans, C. A. Traina, J. W. Ziller, J. Am. Chem. Soc. 2009, 131, 17473–17481;
- 3uC. R. Graves, B. L. Scott, D. E. Morris, J. L. Kiplinger, Chem. Commun. 2009, 776–778;
- 3vW. J. Evans, E. Montalvo, J. W. Ziller, A. G. DiPasquale, A. L. Rheingold, Inorg. Chem. 2010, 49, 222–228;
- 3wR. K. Thomson, T. Cantat, B. L. Scott, D. E. Morris, E. R. Batista, J. L. Kiplinger, Nat. Chem. 2010, 2, 723–729.
- 4
- 4aI. Korobkov, S. Gambarotta, G. P. A. Yap, Angew. Chem. 2003, 115, 838–842;
10.1002/ange.200390186 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 814–818;
- 4bA. Haskel, T. Straub, M. S. Eisen, Organometallics 1996, 15, 3773–3775;
- 4cE. J. Schelter, D. E. Morris, B. L. Scott, J. L. Kiplinger, Chem. Commun. 2007, 1029–1031.
- 5For selected reports on scandium imido complexes, see:
- 5aJ. Chu, E. Lu, Z. Liu, Y. Chen, X. Leng, H. Song, Angew. Chem. 2011, 123, 7819–7822; Angew. Chem. Int. Ed. 2011, 50, 7677–7680;
- 5bZ. Jian, W. Rong, Z. Mou, Y. Pan, H. Xie, D. Cui, Chem. Commun. 2012, 48, 7516–7518;
- 5cB. F. Wicker, H. Fan, A. K. Hickey, M. G. Crestani, J. Scott, M. Pink, D. J. Mindiola, J. Am. Chem. Soc. 2012, 134, 20081–20096;
- 5dT. Chu, W. E. Piers, J. L. Dutton, M. Parvez, Organometallics 2013, 32, 1159–1165;
- 5eJ. Chu, C. E. Kefalidis, L. Maron, X. Leng, Y. Chen, J. Am. Chem. Soc. 2013, 135, 8165–8168.
- 6For selected reports on Group 4 imido complexes, see:
- 6aC. C. Cummins, S. M. Baxter, P. T. Wolczanski, J. Am. Chem. Soc. 1988, 110, 8731–8733;
- 6bJ. E. Hill, R. D. Profilet, P. E. Fanwick, I. P. Rothwell, Angew. Chem. 1990, 102, 713–715; Angew. Chem. Int. Ed. Engl. 1990, 29, 664–665;
- 6cH. W. Roesky, H. Voelker, M. Witt, M. Noltemeyer, Angew. Chem. 1990, 102, 712–713; Angew. Chem. Int. Ed. Engl. 1990, 29, 669–670;
- 6dJ. L. Bennett, P. T. Wolczanski, J. Am. Chem. Soc. 1994, 116, 2179–2180;
- 6eK. E. Meyer, P. J. Walsh, R. G. Bergman, J. Am. Chem. Soc. 1995, 117, 974–985;
- 6fA. D. Schwarz, A. J. Nielson, N. Kaltsoyannis, P. Mountford, Chem. Sci. 2012, 3, 819–824.
- 7For selected recent reports on Group 5 imido complexes, see:
- 7aT. L. Gianetti, G. Nocton, S. G. Minasian, N. C. Tomson, A. L. D. Kilcoyne, S. A. Kozimor, D. K. Shuh, T. Tyliszczak, R. G. Bergman, J. Arnold, J. Am. Chem. Soc. 2013, 135, 3224–3236;
- 7bT. L. Gianetti, R. G. Bergman, J. Arnold, J. Am. Chem. Soc. 2013, 135, 8145–8148;
- 7cA. H. Obenhuber, T. L. Gianetti, X. Berrebi, R. G. Bergman, J. Arnold, J. Am. Chem. Soc. 2014, 136, 2994–2997, and references therein.
- 8For selected recent reports about the bonding of organoactinide complexes, see:
- 8aT. Cantat, C. R. Graves, K. C. Jantunen, C. J. Burns, B. L. Scott, E. J. Schelter, D. E. Morris, P. J. Hay, J. L. Kiplinger, J. Am. Chem. Soc. 2008, 130, 17537–17551;
- 8bN. Barros, D. Maynau, L. Maron, O. Eisenstein, G. Zi, R. A. Andersen, Organometallics 2007, 26, 5059–5065;
- 8cA. Yahia, L. Maron, Organometallics 2009, 28, 672–679;
- 8dW. Ren, X. Deng, G. Zi, D.-C. Fang, Dalton Trans. 2011, 40, 9662–9664.
- 9W. Ren, G. Zi, D.-C. Fang, M. D. Walter, Chem. Eur. J. 2011, 17, 12669–12682.
- 10W. Ren, G. Zi, M. D. Walter, Organometallics 2012, 31, 672–679.
- 11W. Ren, E. Zhou, B. Fang, G. Zi, D.-C. Fang, M. D. Walter, Chem. Sci. 2014, 5, 3165–3172.
- 12W. Ren, G. Zi, D.-C. Fang, M. D. Walter, J. Am. Chem. Soc. 2011, 133, 13183–13196.
- 13C. Cui, H. W. Roesky, Angew. Chem. 2000, 112, 4705–4707;
Angew. Chem. Int. Ed. 2000, 39, 4531–4533.
10.1002/1521-3773(20001215)39:24<4531::AID-ANIE4531>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 14B. Klein, W. P. Neumann, J. Organomet. Chem. 1994, 465, 119–126.
- 15R. I. Michelman, R. A. Andersen, R. G. Bergman, Organometallics 1993, 12, 2741–2751.
- 16A. Mrutu, C. L. Barnes, S. C. Bart, J. R. Walensky, Eur. J. Inorg. Chem. 2013, 4050–4055.
- 17S. Gambarotta, C. Floriani, C. Guastini, J. Am. Chem. Soc. 1982, 104, 1918–1924.
- 18W. Ren, W. W. Lukens, G. Zi, L. Maron, M. D. Walter, Chem. Sci. 2013, 4, 1168–1174.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.