Introduction of an Ionic Liquid into the Micropores of a Metal–Organic Framework and Its Anomalous Phase Behavior†
Corresponding Author
Kazuyuki Fujie
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
R&D Center Kagoshima, Kyocera Corporation, Kirishima-shi, Kagoshima 899-4312 (Japan)
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)Search for more papers by this authorDr. Teppei Yamada
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
Present address: Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)
Present address: International Research Center for Molecular Systems (IRCMS), Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)
Search for more papers by this authorProf. Ryuichi Ikeda
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
Search for more papers by this authorCorresponding Author
Prof. Hiroshi Kitagawa
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075 (Japan)
Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)
INAMORI Frontier Research Center, Kyushu University, Nishi-ku, Fukuoka 819-3095 (Japan)
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)Search for more papers by this authorCorresponding Author
Kazuyuki Fujie
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
R&D Center Kagoshima, Kyocera Corporation, Kirishima-shi, Kagoshima 899-4312 (Japan)
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)Search for more papers by this authorDr. Teppei Yamada
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
Present address: Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)
Present address: International Research Center for Molecular Systems (IRCMS), Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)
Search for more papers by this authorProf. Ryuichi Ikeda
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
Search for more papers by this authorCorresponding Author
Prof. Hiroshi Kitagawa
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075 (Japan)
Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)
INAMORI Frontier Research Center, Kyushu University, Nishi-ku, Fukuoka 819-3095 (Japan)
Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)Search for more papers by this authorWe thank Saeka Fujiwara for nitrogen gas adsorption measurements.
Abstract
Controlling the dynamics of ionic liquids (ILs) is a significant issue for widespread use. Metal–organic frameworks (MOFs) are ideal host materials for ILs because of their small micropores and tunable host–guest interactions. Herein, we demonstrate the first example of an IL incorporated within the micropores of a MOF. The system studied consisted of EMI-TFSA (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide) and ZIF-8 (composed of Zn(MeIM)2; H(MeIM)=2-methylimidazole) as the IL and MOF, respectively. Construction of the EMI-TFSA in ZIF-8 was confirmed by X-ray powder diffraction, nitrogen gas adsorption, and infrared absorption spectroscopy. Differential scanning calorimetry and solid-state NMR measurements showed that the EMI-TFSA inside the micropores demonstrated no freezing transition down to 123 K, whereas bulk EMI-TFSA froze at 231 K. Such anomalous phase behavior originates from the nanosize effect of the MOF on the IL. This result provides a novel strategy for stabilizing the liquid phase of the ILs down to a lower temperature region.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201406011_sm_miscellaneous_information.pdf179.9 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Welton, Chem. Rev. 1999, 99, 2071;
- 1bM. J. Earle, K. R. Seddon, Pure Appl. Chem. 2000, 72, 1391;
- 1cE. R. Parnham, R. E. Morris, Acc. Chem. Res. 2007, 40, 1005.
- 2
- 2aJ. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D. Rogers, Chem. Commun. 1998, 1765;
- 2bL. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke, Nature 1999, 399, 28.
- 3
- 3aP. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772;
10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 3926;
- 3bR. Sheldon, Chem. Commun. 2001, 2399;
- 3cJ. Dupont, R. F. Souza, P. A. Z. Suarez, Chem. Rev. 2002, 102, 3667;
- 3dS. Ntais, A. M. Moschovi, V. Dracopoulos, V. Nikolakis, ECS Trans. 2010, 33, 41.
- 4
- 4aE. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis, Jr., J. Am. Chem. Soc. 2002, 124, 926;
- 4bW. Wu, B. Han, H. Gao, Z. Liu, T. Jiang, J. Huang, Angew. Chem. Int. Ed. 2004, 43, 2415; Angew. Chem. 2004, 116, 2469;
- 4cY. Chen, Z. Hu, K. M. Gupta, J. Jiang, J. Phys. Chem. C 2011, 115, 21736;
- 4dK. M. Gupta, Y. Chen, Z. Hu, J. Jiang, Phys. Chem. Chem. Phys. 2012, 14, 5785;
- 4eN. A. Khan, Z. Hasan, S. H. Jhung, Chem. Eur. J. 2014, 20, 376.
- 5
- 5aB. Garcia, S. Lavallée, G. Perron, C. Michot, M. Armand, Electrochim. Acta 2004, 49, 4583;
- 5bJ.-H. Shin, W. A. Henderson, S. Passerini, J. Electrochem. Soc. 2005, 152, A 978.
- 6
- 6aM. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, J. Electrochem. Soc. 2003, 150, A 499;
- 6bT. Sato, G. Masuda, K. Takagi, Electrochim. Acta 2004, 49, 3603.
- 7P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, J. Am. Chem. Soc. 2003, 125, 1166.
- 8R. F. de Souza, J. C. Padilha, R. S. Gonçalves, J. Dupont, Electrochem. Commun. 2003, 5, 728.
- 9
- 9aK. Fujii, R. Kanzaki, T. Takamuku, Y. Kameda, S. Kohara, M. Kanakubo, M. Shibayama, S. Ishiguro, Y. Umebayashi, J. Chem. Phys. 2011, 135, 244502;
- 9bH.-C. Chang, T.-C. Hung, S.-C. Chang, J.-C. Jiang, S. H. Lin, J. Phys. Chem. C 2011, 115, 11962;
- 9cR. Souda, J. Phys. Chem. B 2009, 113, 12973.
- 10
- 10aJ. D. Holbrey, K. R. Seddon, J. Chem. Soc. Dalton Trans. 1999, 2133;
- 10bD. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G. B. Deacon, Chem. Commun. 2001, 1430.
- 11
- 11aK. N. Marsh, J. A. Boxall, R. Lichtenthaler, Fluid Phase Equilib. 2004, 219, 93;
- 11bR. Hagiwara, K. Tamaki, K. Kubota, T. Goto, T. Nohira, J. Chem. Eng. Data 2008, 53, 355.
- 12
- 12aM. Kanakubo, Y. Hiejima, K. Minami, T. Aizawa, H. Nanjo, Chem. Commun. 2006, 1828;
- 12bS. Chen, G. Wu, M. Sha, S. Huang, J. Am. Chem. Soc. 2007, 129, 2416;
- 12cR. Göbel, P. Hesemann, J. Weber, E. Möller, A. Friedrich, S. Beuermann, A. Taubert, Phys. Chem. Chem. Phys. 2009, 11, 3653.
- 13
- 13aN. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, O. M. Yaghi, Science 2003, 300, 1127;
- 13bX. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, M. J. Rosseinsky, Science 2004, 306, 1012;
- 13cL. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
- 14
- 14aO. M. Yaghi, G. Li, H. Li, Nature 1995, 378, 703;
- 14bJ. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
- 15
- 15aJ. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982;
- 15bC.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940.
- 16
- 16aG. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762;
- 16bM. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
- 17
- 17aT. Okubo, R. Kawajiri, T. Mitani, T. Shimoda, J. Am. Chem. Soc. 2005, 127, 17598;
- 17bM. Alvaro, E. Carbonell, B. Ferrer, F. X. L. i Xamena, H. Garcia, Chem. Eur. J. 2007, 13, 5106.
- 18
- 18aE. Y. Lee, S. Y. Jang, M. P. Suh, J. Am. Chem. Soc. 2005, 127, 6374;
- 18bB. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky, J. Am. Chem. Soc. 2008, 130, 6718.
- 19
- 19aS. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nat. Mater. 2009, 8, 831;
- 19bM. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 9906;
- 19cJ. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski, G. K. H. Shimizu, Nat. Chem. 2009, 1, 705.
- 20K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186.
- 21K. S. W. Sing, Pure Appl. Chem. 1982, 54, 2201.
- 22M. Ue, A. Murakami, S. Nakamura, J. Electrochem. Soc. 2002, 149, A 1385.
- 23H. L. Ngo, K. LeCompte, L. Hargens, A. B. McEwen, Thermochim. Acta 2000, 357, 97.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.