Enantioselective Synthesis of Piperidines through the Formation of Chiral Mixed Phosphoric Acid Acetals: Experimental and Theoretical Studies†
Dr. Zhankui Sun
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
Search for more papers by this authorGrace A. Winschel
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Paul M. Zimmerman
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)Search for more papers by this authorCorresponding Author
Prof. Dr. Pavel Nagorny
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)Search for more papers by this authorDr. Zhankui Sun
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
Search for more papers by this authorGrace A. Winschel
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Paul M. Zimmerman
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)Search for more papers by this authorCorresponding Author
Prof. Dr. Pavel Nagorny
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)Search for more papers by this authorWe thank the ACS PRF (grant no 53428-DNI1 to PN) and the University of Michigan for the financial support.
Abstract
An enantioselective intramolecular chiral phosphoric acid-catalyzed cyclization of unsaturated acetals has been utilized for the synthesis of functionalized chiral piperidines. The chiral enol ether products of these cyclizations undergo subsequent in situ enantioenrichment through acetalization of the minor enantiomer. A new computational reaction exploration method was utilized to elucidate the mechanism and stereoselectivity of this transformation. Rather than confirming the originally postulated cyclization proceeding directly through a vinyl oxocarbenium ion, simulations identified an alternative two-step mechanism involving the formation of a mixed chiral phosphate acetal, which undergoes a concerted, asynchronous SN2′-like displacement to yield the product with stereoselectivity in agreement with experimental observations.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201405128_sm_miscellaneous_information.pdf8.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Wassermann, J. Chem. Soc. 1942, 618;
- 1bP. Yates, P. Eaton, J. Am. Chem. Soc. 1960, 82, 4436.
- 2Selected reviews:
- 2aN. N. Joshi, Proc. Indian Natl. Sci. Acad. 2002, 68, 435;
- 2bA. Corma, H. Garcia, Chem. Rev. 2003, 103, 4307;
- 2cA. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713;
- 2dM. Rueping, A. Kuenkel, I. Atodiresei, Chem. Soc. Rev. 2011, 40, 4539;
- 2eG. Lelais, D. W. C. MacMillan, Aldrichimica Acta 2006, 39, 79;
- 2fD. W. C. MacMillan, Nature 2008, 455, 304;
- 2gA. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416.
- 3M. Harmata, P. Rashatasakhon, Tetrahedron 2003, 59, 2371.
- 4Auxiliary-controlled ionic [2+4] cycloadditions:
- 4aT. Sammakia, M. A. Berliner, J. Org. Chem. 1994, 59, 6890;
- 4bT. Sammakia, M. A. Berliner, J. Org. Chem. 1995, 60, 6652;
- 4cA. Haudrechy, W. Picoul, Y. Langlois, Tetrahedron: Asymmetry 1997, 8, 139;
- 4dR. Kumareswaran, P. S. Vankar, M. V. R. Reddy, S. V. Pitre, R. Roy, Y. D. Vankar, Tetrahedron 1999, 55, 1099.
- 5Auxiliary-controlled ionic [3+4] cycloadditions:
- 5aM. Harmata, D. E. Jones, J. Org. Chem. 1997, 62, 1578;
- 5bM. Harmata, D. E. Jones, M. Kahraman, U. Sharma, C. L. Barnes, Tetrahedron Lett. 1999, 40, 1831;
- 5cC. B. W. Stark, U. Eggert, H. M. R. Hoffmann, Angew. Chem. Int. Ed. 1998, 37, 1266;
10.1002/(SICI)1521-3773(19980518)37:9<1266::AID-ANIE1266>3.0.CO;2-9 CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 1337.
- 6
- 6aM. Terada, H. Tanaka, K. Sorimachi, J. Am. Chem. Soc. 2009, 131, 3430;
- 6bI. Čorić, S. Vellalath, B. List, J. Am. Chem. Soc. 2010, 132, 8536;
- 6cD. J. Cox, M. D. Smith, A. J. Fairbanks, Org. Lett. 2010, 12, 1452;
- 6dI. Čorić, S. Müller, B. List, J. Am. Chem. Soc. 2010, 132, 17370;
- 6eZ.-Y. Han, R. Guo, P.-S. Wang, D.-F. Chen, H. Xiao, L.-Z. Gong, Tetrahedron Lett. 2011, 52, 5963;
- 6fI. Čorić, B. List, Nature 2012, 483, 315;
- 6gZ. Sun, G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc. 2012, 134, 8074;
- 6hM. Terada, Y. Toda, Angew. Chem. Int. Ed. 2012, 51, 2093; Angew. Chem. 2012, 124, 2135;
- 6iH. Wu, Y.-P. He, L.-Z. Gong, Org. Lett. 2013, 15, 460;
- 6jJ. H. Kim, I. Coric, S. Vellalath, B. List, Angew. Chem. Int. Ed. 2013, 52, 4474; Angew. Chem. 2013, 125, 4474;
- 6kE. Mensah, N. Camasso, W. Kaplan, P. Nagorny, Angew. Chem. Int. Ed. 2013, 52, 12932; Angew. Chem. 2013, 125, 13170;
- 6lP. Nagorny, Z. Sun, G. Winschel, Synlett 2013, 661;
- 6mT. Kimura, M. Sekine, D. Takahashi, K. Toshima, Angew. Chem. Int. Ed. 2013, 52, 12131; Angew. Chem. 2013, 125, 12353;
- 6nZ. Chen, J. Sun, Angew. Chem. Int. Ed. 2013, 52, 13593; Angew. Chem. 2013, 125, 13838;
- 6oC.-C. Hsiao, H.-H. Liao, E. Sugiono, I. Atodiresei, M. Rueping, Chem. Eur. J. 2013, 19, 9775;
- 6pM. Terada, T. Yamanaka, Y. Toda, Chem. Eur. J. 2013, 19, 13658;
- 6qR. Quach, D. P. Furket, M. A. Brimble, Tetrahedron Lett. 2013, 54, 5865;
- 6rY. Cui, L. A. Villafane, D. J. Clausen, P. E. Floreancig, Tetrahedron 2013, 69, 7618;
- 6sC. Lu, X. Su, P. E. Floreancig, J. Org. Chem. 2013, 78, 9366;
- 6tV. M. Lombardo, C. D. Thomas, K. A. Scheidt, Angew. Chem. Int. Ed. 2013, 52, 12910; Angew. Chem. 2013, 125, 13148.
- 7
- 7aA. Borovika, P. Nagorny, Tetrahedron 2013, 69, 5719;
- 7bA. Borovika, P.-I. Tang, S. Klapman, P. Nagorny, Angew. Chem. Int. Ed. 2013, 52, 13424; Angew. Chem. 2013, 125, 13666.
- 8
- 8aK. Takasu, S. Maiti, M. Ihara, Heterocycles 2003, 59, 51;
- 8bS. Fustero, D. Jimenez, J. Moscardo, S. Catalan, C. del Pozo, Org. Lett. 2007, 9, 5283;
- 8cE. C. Carlson, L. K. Rathbone, H. Yang, N. D. Collett, R. G. Carter, J. Org. Chem. 2008, 73, 5155;
- 8dS.-L. You, Z. Feng, Q.-L. Xu, L.-X. Dai, Heterocycles 2010, 80, 765;
- 8eJ.-D. Liu, Y.-C. Chen, G.-B. Zhang, Z.-Q. Li, P. Chen, J.-Y. Du, Y.-Q. Tu, C.-A. Fan, Adv. Synth. Catal. 2011, 353, 2721;
- 8fT. Cheng, S. Meng, Y. Huang, Org. Lett. 2013, 15, 1958;
- 8gR. Miyaji, K. Asano, S. Matsubara, Org. Lett. 2013, 15, 3658;
- 8hN. Veerasamy, E. C. Carlson, N. D. Collett, M. Saha, R. G. Carter, J. Org. Chem. 2013, 78, 4779;
- 8iY. Fukata, K. Asano, S. Matsubara, Chem. Lett. 2013, 42, 355.
- 9Reviews:
- 9aC. F. Nising, S. Brase, Chem. Soc. Rev. 2008, 37, 1218;
- 9bZ. Amara, J. Caron, D. Joseph, Nat. Prod. Rep. 2013, 30, 1211.
- 10Y. Ying, H. Kim, J. Hong, Org. Lett. 2011, 13, 796.
- 11Note that the protonated 14 and 15 are not identified as stable structures. Optimization of the structures 14 and 15 led to 1 a and 5 a, respectively, thus indicating these are not stationary points on the PES. For the potential energy surface for the formation of the minor enantiomer refer to Schemes SI–SIII.
- 12The transition-states 11 and 12 could be distinguished by the change in the charge distribution as well as by the PO-C distances. Refer to the Supporting Information (p. 21) for a more detailed discussion.
- 13
- 13aP. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385;
- 13bP. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102;
- 13cP. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043.
- 14A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- 15N. D. Shapiro, V. Rauniyar, G. L. Hamilton, J. Wu, F. D. Toste, Nature 2011, 470, 245.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.