Light-Driven Organocatalysis Using Inexpensive, Nontoxic Bi2O3 as the Photocatalyst†
Dr. Paola Riente
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Search for more papers by this authorAlba Matas Adams
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Search for more papers by this authorDr. Josep Albero
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Search for more papers by this authorCorresponding Author
Prof. Emilio Palomares
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Catalan Institution for Research and Advanced Studies (ICREA), Avda. Lluis Companys 23, 08010 Barcelona (Spain)
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)Search for more papers by this authorCorresponding Author
Prof. Miquel A. Pericàs
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Department de Química Orgànica, Universitat de Barcelona c/Martí i Franqués 1-11, 08028 Barcelona (Spain)
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)Search for more papers by this authorDr. Paola Riente
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Search for more papers by this authorAlba Matas Adams
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Search for more papers by this authorDr. Josep Albero
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Search for more papers by this authorCorresponding Author
Prof. Emilio Palomares
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Catalan Institution for Research and Advanced Studies (ICREA), Avda. Lluis Companys 23, 08010 Barcelona (Spain)
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)Search for more papers by this authorCorresponding Author
Prof. Miquel A. Pericàs
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)
Department de Química Orgànica, Universitat de Barcelona c/Martí i Franqués 1-11, 08028 Barcelona (Spain)
Institute of Chemical Research of Catalonia (ICIQ), Avda.Països Catalans 16, 43007 Tarragona (Spain)Search for more papers by this authorThis work was funded by MINECO (CTQ2012-38594-C02-01), DEC (2009SGR623), and the ICIQ Foundation.
Abstract
The development of enantioselective catalytic processes that make use of sunlight as the energy source and nontoxic, affordable materials as catalysts represents one of the new and rapidly evolving areas in chemical research. The direct asymmetric α-alkylation of aldehydes with α-bromocarbonyl compounds can be successfully achieved by combining bismuth-based materials as low-band-gap photocatalysts with the second-generation MacMillan imidazolidinone as the chiral catalyst and simulated sunlight as a low-cost and clean energy source. This reaction also proceeded with high efficiency when the reaction vial was exposed to the morning sunlight on a clear September day in Tarragona, Spain.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201405118_sm_miscellaneous_information.pdf4.1 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews, see:
- 1aT. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527–532;
- 1bJ. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102–113;
- 1cC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 1dD. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176;
- 1eM. N. Hopkinson, B. Sahoo, J.-L. Li, F. Glorius, Chem. Eur. J. 2014, 20, 3874–3886.
- 2For reviews, see:
- 2aJ. Xuan, L.-Q. Lu, J.-R. Chen, W.-J. Xiao, Eur. J. Org. Chem. 2013, 6755–6770;
- 2bM. Reckenthäler, A. G. Griesbeck, Adv. Synth. Catal. 2013, 355, 2727–2744;
- 2cD. Ravelli, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2013, 42, 97–113; for selected examples, see:
- 2dG. Bergonzini, C. S. Schindler, C. J. Wallentin, E. N. Jacobsen, C. R. J. Stephenson, Chem. Sci. 2014, 5, 112–116;
- 2eT. M. Nguyen, N. Manohar, D. A. Nicewicz, Angew. Chem. Int. Ed. 2014, 53, 6198–6201; Angew. Chem. 2014, 126, 6312–6315.
- 3N. Vignola, B. List, J. Am. Chem. Soc. 2004, 126, 450–451.
- 4D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77–80.
- 5
- 5aH.-W. Shih, M. N. Vander Wal, R. L. Grange, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 13600–13603;
- 5bM. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C. MacMillan, Science 2013, 339, 1593–1596;
- 5cF. R. Petronijević, M. Nappi, D. W. C. MacMillan, J. Am. Chem. Soc. 2013, 135, 18323–18326.
- 6
- 6aT. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton, D. W. C. MacMillan, Science 2007, 316, 582–585;
- 6bA. Mastracchio, A. A. Warkentin, A. M. Walji, D. W. C. MacMillan, Proc. Natl. Acad. Sci. USA 2010, 107, 20648–20651.
- 7M. Cherevatskaya, M. Neumann, S. Füldner, C. Harlander, S. Kümmel, S. Dankesreiter, A. Pfitzner, K. Zeitler, B. König, Angew. Chem. Int. Ed. 2012, 51, 4062–4066; Angew. Chem. 2012, 124, 4138–4142.
- 8
- 8aM. Neumann, S. Füldner, B. König, K. Zeitler, Angew. Chem. Int. Ed. 2011, 50, 951–954; Angew. Chem. 2011, 123, 981–985;
- 8bK. Fidaly, C. Ceballos, A. Falguières, M. S.-I. Veitia, A. Guy, C. Ferroud, Green Chem. 2012, 14, 1293–1297.
- 9E. Arceo, I. D. Jurberg, A. Álvarez-Fernández, P. Melchiorre, Nat. Chem. 2013, 5, 750–756.
- 10
- 10aM. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69–96;
- 10bK. Rajeshwar, N. R. de Tacconi, C. R. Chenthamarakshan, Chem. Mater. 2001, 13, 2765–2782;
- 10cN. Serpone, A. V. Emeline, J. Phys. Chem. Lett. 2012, 3, 673–677;
- 10dH. Kisch, Angew. Chem. Int. Ed. 2013, 52, 812–847; Angew. Chem. 2013, 125, 842–872.
- 11
- 11aN. Zeug, J. Buecheler, H. Kisch, J. Am. Chem. Soc. 1985, 107, 1459–1465;
- 11bB. Ohtani, S. Kusakabe, S.-i. Nishimoto, M. Matsumura, Y. Nakato, Chem. Lett. 1995, 24, 803–804;
- 11cS. Marinković, N. Hoffmann, Eur. J. Org. Chem. 2004, 3102–3107;
- 11dT. Mitkina, C. Stanglmair, W. Setzer, M. Gruber, H. Kisch, B. König, Org. Biomol. Chem. 2012, 10, 3556–3561;
- 11eX. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473–486.
- 12X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891–2959.
- 13
- 13aX.-H. Ho, M.-J. Kang, S.-J. Kim, E. D. Park, H.-Y. Jang, Catal. Sci. Technol. 2011, 1, 923–926;
- 13bM. Rueping, J. Zoller, D. C. Fabry, K. Poscharny, R. M. Koenigs, T. E. Weirich, J. Mayer, Chem. Eur. J. 2012, 18, 3478–3481;
- 13cC. Vila, M. Rueping, Green Chem. 2013, 15, 2056–2059.
- 14U.S. Geological Survey, Mineral Commodity Summaries, January 2012.
- 15G. G. Briand, N. Burford, Chem. Rev. 1999, 99, 2601–2658.
- 16
- 16aN. M. Leonard, L. C. Wieland, R. S. Mohan, Tetrahedron 2002, 58, 8373–8397;
- 16bD. H. Aggen, J. N. Arnold, P. D. Hayes, N. J. Smoter, R. S. Mohan, Tetrahedron 2004, 60, 3675–3679.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.