Asymmetric, Stereodivergent Synthesis of (−)-Clusianone Utilizing a Biomimetic Cationic Cyclization†
Jonathan H. Boyce
Department of Chemistry, Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. John A. Porco Jr.
Department of Chemistry, Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (USA)
Department of Chemistry, Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (USA)Search for more papers by this authorJonathan H. Boyce
Department of Chemistry, Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. John A. Porco Jr.
Department of Chemistry, Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (USA)
Department of Chemistry, Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (USA)Search for more papers by this authorFinancial support from the National Institutes of Health (R01 GM-073855 and GM-099920) is gratefully acknowledged. We thank Prof. John Snyder, Dr. Paul Ralifo, and Neil Lajkiewicz (Boston University) for helpful discussions and Madeline Weber, Dr. Alexander Grenning, Dr. Munmun Mukerjee, and Scott Pardo (Boston University) for experimental assistance.
Abstract
We report a stereodivergent, asymmetric total synthesis of (−)-clusianone in six steps from commercial materials. We implement a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbon atoms. Mechanistic studies point to the unique ability of formic acid to mediate the cyclization forming the clusianone framework.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201404437_sm_miscellaneous_information.pdf6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews on total syntheses of PPAPs, see:
- 1aR. Ciochina, R. B. Grossman, Chem. Rev. 2006, 106, 3963;
- 1bI. P. Singh, J. Sidana, S. B. Bharate, W. J. Foley, Nat. Prod. Rep. 2010, 27, 393;
- 1cC. Tsukano, D. R. Siegel, S. J. Danishefsky, J. Synth. Org. Chem. Jpn. 2010, 68, 592;
- 1d“Polyprenylated Phloroglucinols and Xanthones”: M. Dakanali, E. A. Theodorakis in Biomimetic Organic Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2011;
10.1002/9783527634606.ch12 Google Scholar
- 1eJ. T. Njardarson, Tetrahedron 2011, 67, 7631;
- 1fJ. Richard, R. H. Pouwer, D. Y.-K. Chen, Angew. Chem. 2012, 124, 4612;
10.1002/ange.201103873 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 4536;
- 1gN. S. Simpkins, Chem. Commun. 2013, 49, 1042;
- 1hJ.-A. Richard, Eur. J. Org. Chem. 2014, 273.
- 2For recent syntheses of PPAPs, see:
- 2aN. Biber, K. Möws, B. Plietker, Nat. Chem. 2011, 3, 938;
- 2bQ. Zhang, J. A. Porco, Jr., Org. Lett. 2012, 14, 1796;
- 2cM. Uwamori, A. Saito, M. Nakada, J. Org. Chem. 2012, 77, 5098;
- 2dB. A. Sparling, D. C. Moebius, M. D. Shair, J. Am. Chem. Soc. 2013, 135, 644;
- 2eM. Uwamori, M. Nakada, J. Antibiot. 2013, 66, 141;
- 2fK. Lindermayr, B. Plietker, Angew. Chem. 2013, 125, 12405;
10.1002/ange.201306256 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 12183.
- 3
- 3aL. E. McCandlish, J. C. Hanson, G. H. Stout, Acta Crystallogr. Sect. B 1976, 32, 1793;
- 3bF. D. Monache, G. D. Monache, E. Gacs-Baitz, Phytochemistry 1991, 30, 2003;
10.1016/0031-9422(91)85056-6 Google Scholar
- 3cA. L. Piccinelli, O. Cuesta-Rubio, M. B. Chica, N. Mahmood, B. Pagano, M. Pavone, V. Barone, L. Rastrelli, Tetrahedron 2005, 61, 8206;
- 3dF. T. Martins, J. W. Cruz, Jr., P. B. M. C. Derogis, M. H. dos Santos, M. P. Veloso, J. Ellena, A. C. Doriguetto, J. Braz. Chem. Soc. 2007, 18, 1515;
- 3eF. S. El-Sakhawy, H. A. Kassem, D. R. Abou-Hussein, M. S. El-Gaafary, Bull. Fac. Pharm. (Cairo Univ.) 2007, 45, 233;
- 3fP. B. M. C. Derogis, F. T. Martins, T. C. de Souza, M. E. de C. Moreira, J. D. S. Filho, A. C. Doriguetto, K. R. D. de Souza, M. P. Veloso, M. H. dos Santos, Magn. Reson. Chem. 2008, 46, 278.
- 4For references on the bioactivity of clusianone and other PPAPs, see:
- 4aC. M. A. de Oliveira, A. M. Porto, V. Bittrich, I. Vencato, A. J. Marsaioli, Tetrahedron Lett. 1996, 37, 6427;
- 4bO. Cuesta-Rubio, B. A. Frontana-Uribe, T. Ramírez-Apan, J. Cárdenas, Z. Naturforsch. C 2002, 57, 372;
- 4cC. Ito, M. Itoigawa, Y. Miyamoto, S. Onoda, K. S. Rao, T. Mukainaka, H. Tokuda, H. Nishino, H. Furukawa, J. Nat. Prod. 2003, 66, 206;
- 4dF. Dal Piaz, A. Tosco, D. Eletto, A. L. Piccinelli, O. Moltedo, S. Franceschelli, G. Sbardella, P. Remondelli, L. Rastrelli, L. Vesci, C. Pisano, N. D. Tommasi, ChemBioChem 2010, 11, 818;
- 4eN. S. Simpkins, F. Holtrup, V. Rodeschini, J. D. Taylor, R. Wolf, Bioorg. Med. Chem. Lett. 2012, 22, 6144;
- 4fH. Westekemper, M. Freistuchler, N. Bornfeld, K. Steuhl, M. Scheulen, Graefe′s Arch. Clin. Exp. Ophthalmol. 2013, 251, 279;
- 4gG. L. Pardo-Andreu, Y. Nuñez-Figueredo, V. G. Tudella, O. Cuesta-Rubio, F. P. Rodrigues, C. R. Pestana, S. A. Uyemura, A. M. Leopoldino, L. C. Alberici, C. Curti, Mitochondrion 2011, 11, 255.
- 5For previous racemic syntheses of clusianone, see:
- 5aV. Rodeschini, N. M. Ahmad, N. S. Simpkins, Org. Lett. 2006, 8, 5283;
- 5bC. Tsukano, D. R. Siegel, S. J. Danishefsky, Angew. Chem. 2007, 119, 8996;
10.1002/ange.200703886 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 8840;
- 5cN. M. Ahmad, V. Rodeschini, N. S. Simpkins, S. E. Ward, A. J. Blake, J. Org. Chem. 2007, 72, 4803;
- 5dJ. Qi, J. A. Porco, Jr., J. Am. Chem. Soc. 2007, 129, 12682;
- 5eP. Nuhant, M. David, T. Pouplin, B. Delpech, C. Marazano, Org. Lett. 2007, 9, 287;
- 5fM. Uwamori, M. Nakada, Nat. Prod. Commun. 2013, 66, 141.
- 6For previous asymmetric syntheses of clusianone, see:
- 6aV. Rodeschini, N. S. Simpkins, C. Wilson, J. Org. Chem. 2007, 72, 4265;
- 6bM. R. Garnsey, D. Lim, J. M. Yost, D. M. Coltart, Org. Lett. 2010, 12, 5234;
- 6cM. R. Garnsey, J. A. Matous, J. J. Kwiek, D. M. Coltart, Bioorg. Med. Chem. Lett. 2011, 21, 2406.
- 7O. Cuesta-Rubio, H. Velez-Castro, B. A. Frontana-Uribe, J. Cardenas, Phytochemistry 2001, 57, 279.
- 8For biomimetic cyclization reactions leading to bicyclo[3.3.1]nonane cores of PPAPs, see:
- 8aE. Byrne, D. M. Cahill, P. V. R. Shannon, J. Chem. Soc. C 1970, 1637;
- 8bK. C. Nicolaou, J. A. Pfefferkorn, S. Kim, H. X. Wei, J. Am. Chem. Soc. 1999, 121, 4724;
- 8cK. C. Nicolaou, J. A. Pfefferkorn, G. Cao, S. Kim, J. Kessabi, Org. Lett. 1999, 1, 807;
- 8dS. B. Raikar, P. Nuhant, B. Delpech, C. Marazano, Eur. J. Org. Chem. 2008, 1358;
- 8eE. A. Couladouros, M. Dakanali, K. D. Demadis, V. P. Vidali, Org. Lett. 2009, 11, 4430;
- 8fQ. Zhang, B. Mitasev, J. Qi, J. A. Porco, Jr., J. Am. Chem. Soc. 2010, 132, 14212;
- 8gJ. Qi, A. B. Beeler, Q. Zhang, J. A. Porco, Jr., J. Am. Chem. Soc. 2010, 132, 13642.
- 9For cationic cyclization reactions leading to bicyclo[3.3.1]nonane ring systems, see:
- 9aR. Takagi, Y. Miwa, T. Nerio, Y. Inoue, S. Matsumura, K. Ohkata, Org. Biomol. Chem. 2007, 5, 286;
- 9bR. Takagi, Y. Inoue, K. Ohkata, J. Org. Chem. 2008, 73, 9320;
- 9cF. Barabé, G. Bétournay, G. Bellavance, L. Barriault, Org. Lett. 2009, 11, 4236;
- 9dB. Sow, G. Bellavance, F. Barabé, L. Barriault, Beilstein J. Org. Chem. 2011, 7, 1007;
- 9eF. Barabé, P. Levesque, B. Sow, G. Bellavance, G. Bétournay, L. Barriault, Pure Appl. Chem. 2013, 85, 1161.
- 10B. Mitasev, J. A. Porco, Jr., Org. Lett. 2009, 11, 2285.
- 11See the Supporting Information for complete experimental details and mechanistic studies.
- 12M. S. Kwon, S. H. Sim, Y. K. Chung, E. Lee, Tetrahedron 2011, 67, 10179.
- 13For discussions of factors governing aromatic substitutions of phenols, see:
- 13aN. Kornblum, P. J. Berrigan, W. J. Le Noble, J. Am. Chem. Soc. 1960, 82, 1257;
- 13bN. Kornblum, R. Seltzer, P. Haberfield, J. Am. Chem. Soc. 1963, 85, 1148;
- 13cH. D. Zook, T. J. Russo, E. F. Ferrand, D. S. Stotz, J. Org. Chem. 1968, 33, 2222;
- 13dR. Breslow, K. Groves, M. U. Mayer, J. Am. Chem. Soc. 2002, 124, 3622;
- 13eR. Breslow, Acc. Chem. Res. 2004, 37, 471.
- 14While investigating cationic conditions to cyclize intermediate 9, an elegant radical cyclization strategy for the total synthesis of garcibracteatone and 5-epi-garcibracteatone was reported using a related intermediate, see:
- 14aH. P. Pepper, H. C. Lam, W. M. Bloch, J. H. George, Org. Lett. 2012, 14, 5162;
- 14bH. P. Pepper, S. J. Tulip, Y. Nakano, J. H. George, J. Org. Chem. 2014, 79, 2564.
- 15For a review on lithium coordination chemistry, see: U. Olsher, Chem. Rev. 1991, 91, 137.
- 16For factors influencing C- versus O-selectivity, see:
- 16aR. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533;
- 16bT. Ho, Tetrahedron 1985, 41, 1;
- 16cT. K. M. Shing, L. Li, K. Narkunan, J. Org. Chem. 1997, 62, 1617;
- 16dH. Mayr, M. Breugst, A. R. Ofial, Angew. Chem. 2011, 123, 6598;
10.1002/ange.201007100 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 6470.
- 17For relevant examples of lithium chelation, see: (sulfoxides)
- 17aR. Tanikaga, K. Hamamura, K. Hosoya, A. Kaji, J. Chem. Soc. Chem. Commun. 1988, 817; (LiHMDS enolates in THF)
- 17bP. F. Godenschwager, D. B. Collum, J. Am. Chem. Soc. 2008, 130, 8726; (sulfones)
- 17cH. J. Reich, Chem. Rev. 2013, 113, 7130.
- 18F. Zhao, Y. Watanabe, H. Nozawa, A. Daikonnya, K. Kondo, S. Kitanaka, J. Nat. Prod. 2005, 68, 43.
- 19
- 19aJ. Gras, Y. K. W. Chang, A. Guerin, Synthesis 1985, 74; For an example with LiI and p-TsOH, see:
- 19bM.-L. Bennasar, J. Jiménez, B. A. Sufi, J. Bosch, Tetrahedron Lett. 1996, 37, 7653.
- 20If formic acid-d2 was used, Cope rearrangement was not observed for (S,S)-8.
- 21For examples of biomimetic cyclization reactions with formic acid, see:
- 21aB. M. Trost, J. M. Balkovec, M. K.-T. Mao, J. Am. Chem. Soc. 1986, 108, 4974;
- 21bF. Marion, D. E. Williams, B. O. Patrick, I. Hollander, R. Mallon, S. C. Kim, D. M. Roll, L. Feldberg, R. V. Soest, R. J. Andersen, Org. Lett. 2006, 8, 321.
- 22Compound 21 was structurally confirmed after prenylation employing olefin metathesis as detailed in the Supporting Information.
- 23For a comprehensive review on the reactivity of formic acid and its derivatives, see H. W. Gibson, Chem. Rev. 1969, 69, 673.
- 24For examples of formate addition to strained or electron-deficient ketones, see:
- 24aJ. P. Schaefer, J. Am. Chem. Soc. 1960, 82, 4091;
- 24bD. M. Pawar, D. Cain-Davis, E. A. Noe, J. Org. Chem. 2007, 72, 2003.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.