Hydrogen Storage in a Potassium-Ion-Bound Metal–Organic Framework Incorporating Crown Ether Struts as Specific Cation Binding Sites†
Dr. Dae-Woon Lim
Department of Chemistry, Seoul National University, Seoul 151-747 (Republic of Korea)
Current address: Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353 (Republic of Korea)
Search for more papers by this authorSeung An Chyun
Department of Chemistry, Seoul National University, Seoul 151-747 (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Myunghyun Paik Suh
Department of Chemistry, Seoul National University, Seoul 151-747 (Republic of Korea)
Current address: Department of Chemistry, Hanyang University, Seoul 133-791 (Republic of Korea)
Department of Chemistry, Seoul National University, Seoul 151-747 (Republic of Korea)Search for more papers by this authorDr. Dae-Woon Lim
Department of Chemistry, Seoul National University, Seoul 151-747 (Republic of Korea)
Current address: Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353 (Republic of Korea)
Search for more papers by this authorSeung An Chyun
Department of Chemistry, Seoul National University, Seoul 151-747 (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Myunghyun Paik Suh
Department of Chemistry, Seoul National University, Seoul 151-747 (Republic of Korea)
Current address: Department of Chemistry, Hanyang University, Seoul 133-791 (Republic of Korea)
Department of Chemistry, Seoul National University, Seoul 151-747 (Republic of Korea)Search for more papers by this authorThis work was supported by National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST) (No. 2005-0093842). We acknowledge the Pohang Accelerator Laboratory (PAL) for the use of the synchrotron 2D(SMC) beamline. D.-W.L. acknowledges support by Basic Science Research Fellowship from Seoul National University.
Abstract
To develop a metal–organic framework (MOF) for hydrogen storage, SNU-200 incorporating a 18-crown-6 ether moiety as a specific binding site for selected cations has been synthesized. SNU-200 binds K+, NH4+, and methyl viologen(MV2+) through single-crystal to single-crystal transformations. It exhibits characteristic gas-sorption properties depending on the bound cation. SNU-200 activated with supercritical CO2 shows a higher isosteric heat (Qst) of H2 adsorption (7.70 kJ mol−1) than other zinc-based MOFs. Among the cation inclusions, K+ is the best for enhancing the isosteric heat of the H2 adsorption (9.92 kJ mol−1) as a result of the accessible open metal sites on the K+ ion.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201404265_sm_miscellaneous_information.pdf1.7 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Chem. Rev. 2012, 112, 782–835;
- 1bJ. Sculley, D. Yuan, H.-C. Zhou, Energy Environ. Sci. 2011, 4, 2721–2735;
- 1cK. Sumida, D. Stuck, L. Mino, J.-D. Chai, E. D. Bloch, O. Zavorotynska, L. J. Murray, M. Dinca, S. Chavan, S. Bordiga, M. Head-Gordon, J. R. Long, J. Am. Chem. Soc. 2013, 135, 1083–1091.
- 2
- 2aH.-S. Choi, M. P. Suh, Angew. Chem. 2009, 121, 6997–7001; Angew. Chem. Int. Ed. 2009, 48, 6865–6869;
- 2bH. J. Park, M. P. Suh, Chem. Sci. 2013, 4, 685–690;
- 2cD. H. Hong, M. P. Suh, Chem. Commun. 2012, 48, 9168–9170;
- 2dT. K. Kim, M. P. Suh, Chem. Commun. 2011, 47, 4258–4260.
- 3
- 3aH. J. Park, Y. E. Cheon, M. P. Suh, Chem. Eur. J. 2010, 16, 11662–11669;
- 3bH. J. Park, M. P. Suh, Chem. Commun. 2010, 46, 610–612.
- 4A. Corma, H. Garcia, F. X. L. Xamena, Chem. Rev. 2010, 110, 4606–4655.
- 5
- 5aH. R. Moon, D.-W. Lim, M. P. Suh, Chem. Soc. Rev. 2013, 42, 1807–1824;
- 5bD.-W. Lim, J. W. Yoon, K. Y. Ryu, M. P. Suh, Angew. Chem. 2012, 124, 9952–9955; Angew. Chem. Int. Ed. 2012, 51, 9814–9817;
- 5cY. E. Cheon, M. P. Suh, Angew. Chem. 2009, 121, 2943–2947;
10.1002/ange.200805494 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 2899–2903.
- 6
- 6aJ.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504;
- 6bL. Du, Z. Lu, K. Zheng, J. Wang, X. Zheng, Y. Pan, X. You, J. Bai, J. Am. Chem. Soc. 2013, 135, 562–565.
- 7
- 7aJ. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 1304–1315;
- 7bK. K. Tanabe, S. M. Cohen, Chem. Soc. Rev. 2011, 40, 498–519;
- 7cJ. Park, Z. U. Wang, L.-B. Sun, Y.-P. Chen, H.-C. Zhou, J. Am. Chem. Soc. 2012, 134, 20110–20116.
- 8Y.-G. Lee, H. R. Moon, Y. E. Cheon, M. P. Suh, Angew. Chem. 2008, 120, 7855–7859; Angew. Chem. Int. Ed. 2008, 47, 7741–7745.
- 9Q. Li, W. Zhang, O. Š. Miljanic, C.-H. Sue, Y.-L. Zhao, L. Liu, C. B. Knobler, J. F. Stoddart, O. M. Yaghi, Science 2009, 325, 855–859.
- 10H. J. Park, M. P. Suh, Chem. Commun. 2012, 48, 3400–3402.
- 11
- 11aK. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant, J. T. Hupp, J. Am. Chem. Soc. 2009, 131, 3866–3868;
- 11bK. L. Mulfort, J. T. Hupp, Inorg. Chem. 2008, 47, 7936–7938.
- 12
- 12aB. Panella, M. Hirscher, Adv. Mater. 2005, 17, 538–541;
- 12bJ. Y. Lee, D. H. Olson, L. Pan, T. J. Emge, J. Li, Adv. Funct. Mater. 2007, 17, 1255–1262;
- 12cW. Zhou, H. Wu, M. R. Hartman, T. Yildirim, J. Phys. Chem. C 2007, 111, 16131–16137;
- 12dZ. Hulvey, D. A. Sava, J. Eckert, A. K. Cheetham, Inorg. Chem. 2011, 50, 403–405.
- 13
- 13aQ. Li, C.-H. Sue, S. Basu, A. K. Shveyd, W. Zhang, G. Barin, L. Fang, A. A. Sarjeant, J. F. Stoddart, O. M. Yaghi, Angew. Chem. 2010, 122, 6903–6907; Angew. Chem. Int. Ed. 2010, 49, 6751–6755;
- 13bA. Coskun, M. Hmadeh, G. Barin, F. Gándara, Q. Li, E. Choi, N. L. Strutt, D. B. Cordes, A. M. Z. Slawin, J. F. Stoddart, J.-P. Sauvage, O. M. Yaghi, Angew. Chem. 2012, 124, 2202–2205;
10.1002/ange.201107873 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 2160–2163;
- 13cY.-L. Zhao, L. Liu, W. Zhang, C.-H. Sue, Q. Li, O. Š. Miljanić, O. M. Yaghi, J. F. Stoddart, Chem. Eur. J. 2009, 15, 13356–13380.
- 14H. K. Frensdorff, J. Am. Chem. Soc. 1971, 93, 600–606.
- 15J. W. Steed, Coord. Chem. Rev. 2001, 215, 171–221.
- 16Materials Studio v5.5, Accelrys Inc., San Diego, CA, 2010.
- 17F. Nouar, J. Eckert, J. F. Eubank, P. Forster, M. Eddaoudi, J. Am. Chem. Soc. 2009, 131, 2864–2870.
- 18
- 18aS. Yang, X. Lin, A. J. Blake, G. S. Walker, P. Hubberstey, N. R. Champness, M. Schröder, Nat. Chem. 2009, 1, 487–493;
- 18bS. Yang, G. S. B. Martin, J. J. Titman, A. J. Blake, D. R. Allan, N. R. Champness, M. Schröder, Inorg. Chem. 2011, 50, 9374–9384.
- 19Y. Li, L. Xie, Y. Liu, R. Yang, X. Li, Inorg. Chem. 2008, 47, 10372–10377.
- 20CCDC CCDC-920678 (SNU-200), 922626 ([K+⊂SNU-200⋅SCN-]⋅G), and 949494 ([NH4+⊂SNU-200]⋅Cl-⋅G), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.