High Correlation between Oxidation Loci on Graphene Oxide†
Jinrong Yang
Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
University of Chinese Academy of Sciences, Beijing, 100049 (China)
Search for more papers by this authorCorresponding Author
Dr. Guosheng Shi
Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
Guosheng Shi, Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
Yusong Tu, College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009 and China Institute of Systems Biology, Shanghai University, Shanghai, 200444 (China)
Search for more papers by this authorCorresponding Author
Dr. Yusong Tu
College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009 and China Institute of Systems Biology, Shanghai University, Shanghai, 200444 (China)
Guosheng Shi, Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
Yusong Tu, College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009 and China Institute of Systems Biology, Shanghai University, Shanghai, 200444 (China)
Search for more papers by this authorProf. Haiping Fang
Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
Search for more papers by this authorJinrong Yang
Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
University of Chinese Academy of Sciences, Beijing, 100049 (China)
Search for more papers by this authorCorresponding Author
Dr. Guosheng Shi
Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
Guosheng Shi, Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
Yusong Tu, College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009 and China Institute of Systems Biology, Shanghai University, Shanghai, 200444 (China)
Search for more papers by this authorCorresponding Author
Dr. Yusong Tu
College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009 and China Institute of Systems Biology, Shanghai University, Shanghai, 200444 (China)
Guosheng Shi, Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
Yusong Tu, College of Physics Science and Technology, Yangzhou University, Jiangsu, 225009 and China Institute of Systems Biology, Shanghai University, Shanghai, 200444 (China)
Search for more papers by this authorProf. Haiping Fang
Department Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
Search for more papers by this authorThis work is supported by NSFC (11290164 and 11105088), SNSFC (13ZR1447900), Shanghai University (HPC ZQ4000), the Supercomputer Center of the Chinese Academy of Sciences and the Shanghai Supercomputer Center of China. We thank Yi Gao and Pan Guo for helpful discussions and their crucial reading of this manuscript.
Abstract
Recent experiments have shown the coexistence of both large unoxidized and oxidized regions on graphene oxide (GO), but the underlying mechanism for the formation of the GO atomic structure remains unknown. Now, using density functional calculations, 52 oxidation pathways for local pyrene structures on GO were identified, and a kinetic profile for graphene oxidation with a high correlation between oxidation loci was proposed, which is different from the conventional view, which entails a random distribution of oxidation loci. The high correlation is an essential nature of graphene oxidation processes and can be attributed to three crucial effects: 1) breaking of delocalized π bonds, 2) steric hindrance, and 3) hydrogen-bond formation. This high correlation leads to the coexistence of both large unoxidized and oxidized regions on GO. Interestingly, even in oxidized regions on GO, some small areas of sp2-hybridized domains, similar to “islands”, can persist because of steric effects.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201404144_sm_miscellaneous_information.pdf1.7 MB | miscellaneous_information |
ange_201404144_sm_video_go_evolution.avi3.6 MB | video_go_evolution |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A. A. Ashkarran, M. Mahmoudi, Chem. Rev. 2013, 113, 3407–3424;
- 1bD. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027–6053.
- 2V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev. 2012, 112, 6156–6214.
- 3
- 3aM. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S.-i. Noro, T. Yamada, H. Kitagawa, S. Hayami, J. Am. Chem. Soc. 2013, 135, 8097–8100;
- 3bS. S. Chou, M. De, J. Luo, V. M. Rotello, J. Huang, V. P. Dravid, J. Am. Chem. Soc. 2012, 134, 16725–16733;
- 3cL. Jin, K. Yang, K. Yao, S. Zhang, H. Tao, S.-T. Lee, Z. Liu, R. Peng, ACS Nano 2012, 6, 4864–4875;
- 3dE. Morales-Narváez, A. R. Hassan, A. Merkoçi, Angew. Chem. 2013, 125, 14024–14028;
10.1002/ange.201307740 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 13779–13783.
- 4
- 4aP. V. Kumar, M. Bernardi, J. C. Grossman, ACS Nano 2013, 7, 1638–1645;
- 4bA. L. Exarhos, M. E. Turk, J. M. Kikkawa, Nano Lett. 2013, 13, 344–349;
- 4cP. Johari, V. B. Shenoy, ACS Nano 2011, 5, 7640–7647;
- 4dK. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2010, 2, 1015–1024;
- 4eK. Hu, L. S. Tolentino, D. D. Kulkarni, C. Ye, S. Kumar, V. V. Tsukruk, Angew. Chem. 2013, 125, 14029–14033; Angew. Chem. Int. Ed. 2013, 52, 13784–13788.
- 5
- 5aC. Su, K. P. Loh, Acc. Chem. Res. 2013, 46, 2275–2285;
- 5bC. Su, M. Acik, K. Takai, J. Lu, S.-j. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y. J. Chabal, K. P. Loh, Nat. Commun. 2012, 3, 1298;
- 5cQ. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782–796.
- 6
- 6aJ. Y. Kim, W. H. Lee, J. W. Suk, J. R. Potts, H. Chou, I. N. Kholmanov, R. D. Piner, J. Lee, D. Akinwande, R. S. Ruoff, Adv. Mater. 2013, 25, 2308–2313;
- 6bX. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666–686;
- 6cJ. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, S. O. Kim, Angew. Chem. 2011, 123, 3099–3103; Angew. Chem. Int. Ed. 2011, 50, 3043–3047.
- 7B. J. Hong, O. C. Compton, Z. An, I. Eryazici, S. T. Nguyen, ACS Nano 2012, 6, 63–73.
- 8Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Z. Liu, Q. Huang, C. Fan, H. Fang, R. Zhou, Nat. Nanotechnol. 2013, 8, 594–601.
- 9F. Perreault, M. E. Tousley, M. Elimelech, Environ. Sci. Technol. Lett. 2014, 1, 71–76.
- 10J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G. G. Gurzadyan, Sci. Rep. 2012, 2, 792.
- 11
- 11aZ. Li, W. Zhang, Y. Luo, J. Yang, J. G. Hou, J. Am. Chem. Soc. 2009, 131, 6320–6321;
- 11bL. Ma, J. Wang, F. Ding, Angew. Chem. 2012, 124, 1187–1190; Angew. Chem. Int. Ed. 2012, 51, 1161–1164;
- 11cJ.-L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud′homme, I. A. Aksay, R. Car, Phys. Rev. Lett. 2006, 96, 176101.
- 12
- 12aJ. E. Johns, M. C. Hersam, Acc. Chem. Res. 2013, 46, 77–86;
- 12bS. Zhou, A. Bongiorno, Sci. Rep. 2013, 3, 2484;
- 12cA. Hunt, D. A. Dikin, E. Z. Kurmaev, T. D. Boyko, P. Bazylewski, G. S. Chang, A. Moewes, Adv. Funct. Mater. 2012, 22, 3950–3957;
- 12dD. Pacilé, J. Meyer, A. Fraile Rodríguez, M. Papagno, C. Gomez-Navarro, R. Sundaram, M. Burghard, K. Kern, C. Carbone, U. Kaiser, Carbon 2011, 49, 966–972;
- 12eD. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228–240;
- 12fS. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217–224;
- 12gD. W. Boukhvalov, M. I. Katsnelson, J. Am. Chem. Soc. 2008, 130, 10697–10701;
- 12hK. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud′Homme, I. A. Aksay, R. Car, Nano Lett. 2008, 8, 36–41;
- 12iT. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Chem. Mater. 2006, 18, 2740–2749;
- 12jG. Titelman, V. Gelman, S. Bron, R. Khalfin, Y. Cohen, H. Bianco-Peled, Carbon 2005, 43, 641–649;
- 12kH. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 1998, 287, 53–56;
- 12lA. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 1998, 102, 4477–4482;
- 12mU. Hofmann, R. Holst, Ber. Dtsch. Chem. Ges. 1939, 72, 754–771.
- 13G. Ruess, Monatsh. Chem. 1946, 76, 381–417.
10.1007/BF00898987 Google Scholar
- 14W. Scholz, H.-P. Boehm, Z. Anorg. Allg. Chem. 1969, 369, 327–340.
- 15T. Nakajima, Y. Matsuo, Carbon 1994, 32, 469–475.
- 16W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, R. S. Ruoff, Science 2008, 321, 1815–1817.
- 17
- 17aJ. C. Meyer, C. O. Girit, M. Crommie, A. Zettl, Nature 2008, 454, 319–322;
- 17bC. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 2010, 10, 1144–1148;
- 17cK. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, A. Zettl, Adv. Mater. 2010, 22, 4467–4472.
- 18J. Johnson, C. Benmore, S. Stankovich, R. Ruoff, Carbon 2009, 47, 2239–2243.
- 19S. Saxena, T. A. Tyson, E. Negusse, J. Phys. Chem. Lett. 2010, 1, 3433–3437.
- 20K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano Lett. 2009, 9, 1058–1063.
- 21
- 21aB. Huang, H. Xiang, Q. Xu, S.-H. Wei, Phys. Rev. Lett. 2013, 110, 085501;
- 21bM.-T. Nguyen, R. Erni, D. Passerone, Phys. Rev. B 2012, 86, 115406;
- 21cN. Lu, D. Yin, Z. Li, J. Yang, J. Phys. Chem. C 2011, 115, 11991–11995;
- 21dA. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, V. B. Shenoy, Nat. Chem. 2010, 2, 581–587;
- 21eJ.-A. Yan, L. Xian, M. Chou, Phys. Rev. Lett. 2009, 103, 086802.
- 22J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical kinetics and dynamics, Vol. 3, Prentice Hall, Englewood Cliffs, 1989.
- 23A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 24Gaussian 09 (Revision A.1), M. J. Frisch, et al., Gaussian, Inc., Wallingford, CT, 2009.
- 25
- 25aM. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud′homme, I. A. Aksay, Chem. Mater. 2007, 19, 4396–4404;
- 25bD. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806–4814;
- 25cP. Adamczyk, A. Dybala-Defratyka, P. Paneth, Environ. Sci. Technol. 2011, 45, 3006–3011;
- 25dS. Dash, S. Patel, B. K. Mishra, Tetrahedron 2009, 65, 707–739.
- 26
- 26aC. H. A. Wong, C. K. Chua, B. Khezri, R. D. Webster, M. Pumera, Angew. Chem. 2013, 125, 8847–8850; Angew. Chem. Int. Ed. 2013, 52, 8685–8688;
- 26bD. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872–876;
- 26cR. Cruz-Silva, A. Morelos-Gomez, S. Vega-Diaz, F. Tristan-Lopez, A. L. Elias, N. Perea-Lopez, H. Muramatsu, T. Hayashi, K. Fujisawa, Y. A. Kim, M. Endo, M. Terrones, ACS Nano 2013, 7, 2192–2204.
- 27W. S. Hummers, Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.