Transient Substrate-Induced Catalyst Formation in a Dynamic Molecular Network†
Hugo Fanlo-Virgós
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Search for more papers by this authorDr. Andrea-Nekane R. Alba
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Search for more papers by this authorSaleh Hamieh
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Search for more papers by this authorMathieu Colomb-Delsuc
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Search for more papers by this authorCorresponding Author
Prof. Dr. Sijbren Otto
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.comSearch for more papers by this authorHugo Fanlo-Virgós
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Search for more papers by this authorDr. Andrea-Nekane R. Alba
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Search for more papers by this authorSaleh Hamieh
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Search for more papers by this authorMathieu Colomb-Delsuc
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Search for more papers by this authorCorresponding Author
Prof. Dr. Sijbren Otto
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.com
Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) http://www.otto-lab.comSearch for more papers by this authorThis work was supported by the EU (Marie-Curie RTN Revcat and IEF fellowship for A.-N. R. A.), the ERC, COST (CM1005 and CM1304), the University of Groningen, and the Dutch Ministry of Education, Culture and Science (Gravity Program 024.001.035).
Abstract
In biology enzyme concentrations are continuously regulated, yet for synthetic catalytic systems such regulatory mechanisms are underdeveloped. We now report how a substrate of a chemical reaction induces the formation of its own catalyst from a dynamic molecular network. After complete conversion of the substrate, the network disassembles the catalyst. These results open up new opportunities for controlling catalysis in synthetic chemical systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201403480_sm_miscellaneous_information.pdf1.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. J. Aragon, A. Sols, FASEB J. 1991, 5, 2945–2950.
- 2
- 2aJ. K. M. Sanders, Chem. Eur. J. 1998, 4, 1378–1383;
10.1002/(SICI)1521-3765(19980807)4:8<1378::AID-CHEM1378>3.0.CO;2-3 CAS Web of Science® Google Scholar
- 2bD. Fiedler, D. H. Leung, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2005, 38, 349–358;
- 2cT. S. Koblenz, J. Wassenaar, J. N. H. Reek, Chem. Soc. Rev. 2008, 37, 247–262;
- 2dM. D. Pluth, R. G. Bergman, K. N. Raymond, Science 2007, 316, 85–88;
- 2eC. J. Brown, G. M. Miller, M. W. Johnson, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2011, 133, 11964–11966;
- 2fP. Dydio, W. I. Dzik, M. Lutz, B. de Bruin, J. N. H. Reek, Angew. Chem. Int. Ed. 2011, 50, 396–400; Angew. Chem. 2011, 123, 416–420;
- 2gM. Yoshizawa, M. Tamura, M. Fujita, Science 2006, 312, 251–254;
- 2hT. Murase, S. Horiuchi, M. Fujita, J. Am. Chem. Soc. 2010, 132, 2866–2867;
- 2iM. A. Sarmentero, H. Fernandez-Perez, E. Zuidema, C. Bo, A. Vidal-Ferran, P. Ballester, Angew. Chem. Int. Ed. 2010, 49, 7489–7492; Angew. Chem. 2010, 122, 7651–7654;
- 2jS. Hu, J. Li, J. Xiang, J. Pan, S. Luo, J.-P. Cheng, J. Am. Chem. Soc. 2010, 132, 7216–7228;
- 2kA. B. C. Deutman, C. Monnereau, J. A. A. W. Elemans, G. Ercolani, R. J. M. Nolte, A. E. Rowan, Science 2008, 322, 1668–1671;
- 2lF. R. Pinacho Crisóstomo, A. Lledó, S. R. Shenoy, T. Iwasawa, J. Rebek, Jr., J. Am. Chem. Soc. 2009, 131, 7402–7410;
- 2mM. Nakash, Z. Clyde-Watson, N. Feeder, J. E. Davies, S. J. Teat, J. K. M. Sanders, J. Am. Chem. Soc. 2000, 122, 5286–5293;
- 2nG. E. Oosterom, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, Angew. Chem. Int. Ed. 2001, 40, 1828–1849;
10.1002/1521-3773(20010518)40:10<1828::AID-ANIE1828>3.0.CO;2-Y CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 1878–1901;
- 2oA. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606–4655;
- 2pW. M. Hart-Cooper, K. N. Clary, F. D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2012, 134, 17873–17876;
- 2qS. J. Lee, S.-H. Cho, K. L. Mulfort, D. M. Tiede, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2008, 130, 16828–16829;
- 2rA. Cavarzan, A. Scarso, P. Sgarbossa, G. Strukul, J. N. H. Reek, J. Am. Chem. Soc. 2011, 133, 2848–2851;
- 2sJ. Meeuwissen, J. N. H. Reek, Nat. Chem. 2010, 2, 615–621.
- 3
- 3aL. Kovbasyuk, R. Kramer, Chem. Rev. 2004, 104, 3161–3187;
- 3bH. J. Yoon, J. Kuwabara, J. H. Kim, C. A. Mirkin, Science 2010, 330, 66–69;
- 3cP. Dydio, C. Rubay, T. Gadzikwa, M. Lutz, J. N. H. Reek, J. Am. Chem. Soc. 2011, 133, 17176–17179;
- 3dL. Zhu, E. V. Anslyn, Angew. Chem. Int. Ed. 2006, 45, 1190–1196; Angew. Chem. 2006, 118, 1208–1215;
- 3eM. J. Wiester, P. A. Ulmann, C. A. Mirkin, Angew. Chem. Int. Ed. 2011, 50, 114–137; Angew. Chem. 2011, 123, 118–142.
- 4
- 4aF. Rodríguez-Llansola, B. Escuder, J. F. Miravet, J. Am. Chem. Soc. 2009, 131, 11478–11484;
- 4bJ. B. Wang, B. L. Feringa, Science 2011, 331, 1429–1432;
- 4cJ. F. Hull, Y. Himeda, W. H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, Nat. Chem. 2012, 4, 383–388.
- 5S. Otto, Acc. Chem. Res. 2012, 45, 2200–2210.
- 6
- 6aP. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652–3711;
- 6bJ. N. H. Reek, S. Otto, Dynamic Combinatorial Chemistry (Eds.: ), Wiley-VCH, Weinheim, 2010;
10.1002/9783527629701 Google Scholar
- 6cB. L. Miller, Dynamic Combinatorial Chemistry in Drug Discovery, Bioorganic Chemistry, and Materials Science (Ed.: ) Wiley, Hoboken, 2010;
- 6dJ. M. Lehn, Chem. Soc. Rev. 2007, 36, 151–160;
- 6eR. A. R. Hunt, S. Otto, Chem. Commun. 2011, 47, 847–858;
- 6fF. B. L. Cougnon, J. K. M. Sanders, Acc. Chem. Res. 2012, 45, 2211–2221;
- 6gA. Herrmann, Chem. Eur. J. 2012, 18, 8568–8577;
- 6hJ. Li, P. Nowak, S. Otto, J. Am. Chem. Soc. 2013, 135, 9222–9239.
- 7
- 7aA. R. Stefankiewicz, M. R. Sambrook, J. K. M. Sanders, Chem. Sci. 2012, 3, 2326–2329;
- 7bS. Hamieh, R. F. Ludlow, O. Perraud, K. R. West, E. Mattia, S. Otto, Org. Lett. 2012, 14, 5404–5407;
- 7cZ. Rodriguez-Docampo, E. Eugenieva-Ilieva, C. Reyheller, A. M. Belenguer, S. Kubik, S. Otto, Chem. Commun. 2011, 47, 9798–9800;
- 7dJ. M. Klein, V. Saggiomo, L. Reck, M. McPartlin, G. Dan Pantoş, U. Lüning, J. K. M. Sanders, Chem. Commun. 2011, 47, 3371–3373;
- 7eS. R. Beeren, J. K. M. Sanders, Chem. Sci. 2011, 2, 1560–1567;
- 7fS. R. Beeren, J. K. M. Sanders, J. Am. Chem. Soc. 2011, 133, 3804–3807;
- 7gJ. A. Berrocal, R. Cacciapaglia, S. Di Stefano, Org. Biomol. Chem. 2011, 9, 8190–8194;
- 7hM. Bru, I. Alfonso, M. Bolte, M. I. Burguete, S. V. Luis, Chem. Commun. 2011, 47, 283–285;
- 7iM. K. Chung, K. Severin, S. J. Lee, M. L. Waters, M. R. Gagne, Chem. Sci. 2011, 2, 744–747;
- 7jC. Givelet, J. L. Sun, D. Xu, T. J. Emge, A. Dhokte, R. Warmuth, Chem. Commun. 2011, 47, 4511–4513;
- 7kC. X. Zhang, Q. Wang, H. Long, W. Zhang, J. Am. Chem. Soc. 2011, 133, 20995–21001;
- 7lJ. M. Klein, J. K. Clegg, V. Saggiomo, L. Reck, U. Luning, J. K. M. Sanders, Dalton Trans. 2012, 41, 3780–3786;
- 7mJ. A. Berrocal, R. Cacciapaglia, S. Di Stefano, L. Mandolini, New J. Chem. 2012, 36, 40–43;
- 7nJ. M. Klein, V. Saggiomo, L. Reck, U. Lüning, J. K. M. Sanders, Org. Biomol. Chem. 2012, 10, 60–66.
- 8
- 8aI. Huc, J.-M. Lehn, Proc. Natl. Acad. Sci. USA 1997, 94, 2106–2110;
- 8bP. C. Gareiss, K. Sobczak, B. R. McNaughton, P. B. Palde, C. A. Thornton, B. L. Miller, J. Am. Chem. Soc. 2008, 130, 16254–16261;
- 8cM. Sakulsombat, P. Vongvilai, O. Ramstrom, Org. Biomol. Chem. 2011, 9, 1112–1117;
- 8dP. López-Senin, I. Gómez-Pinto, A. Grandas, V. Marchán, Chem. Eur. J. 2011, 17, 1946–1953;
- 8eI. K. H. Leung, T. Brown, C. J. Schofield, T. D. W. Claridge, MedChemComm 2011, 2, 390–395;
- 8fC. R. S. Durai, M. M. Harding, Aust. J. Chem. 2011, 64, 671–680;
- 8gG. Cappelletti, D. Cartelli, B. Peretto, M. Ventura, M. Riccioli, F. Colombo, J. S. Snaith, S. Borrelli, D. Passarella, Tetrahedron 2011, 67, 7354–7357;
- 8hM. Demetriades, I. K. H. Leung, R. Chowdhury, M. C. Chan, M. A. McDonough, K. K. Yeoh, Y. M. Tian, T. D. W. Claridge, P. J. Ratcliffe, E. C. Y. Woon, C. J. Schofield, Angew. Chem. Int. Ed. 2012, 51, 6672–6675; Angew. Chem. 2012, 124, 6776–6779.
- 9
- 9aE. Moulin, G. Cormosw, N. Giuseppone, Chem. Soc. Rev. 2012, 41, 1031–1049;
- 9bR. J. Williams, A. M. Smith, R. Collins, N. Hodson, A. K. Das, R. V. Ulijn, Nat. Nanotechnol. 2009, 4, 19–24;
- 9cJ. M. A. Carnall, C. A. Waudby, A. M. Belenguer, M. C. A. Stuart, J. J. P. Peyralans, S. Otto, Science 2010, 327, 1502–1506;
- 9dR. Nguyen, L. Allouche, E. Buhler, N. Giuseppone, Angew. Chem. Int. Ed. 2009, 48, 1093–1096; Angew. Chem. 2009, 121, 1113–1116;
- 9eJ. W. Li, J. M. A. Carnall, M. C. A. Stuart, S. Otto, Angew. Chem. Int. Ed. 2011, 50, 8384–8386; Angew. Chem. 2011, 123, 8534–8536;
- 9fN. Jouault, R. Nguyen, M. Rawiso, N. Giuseppone, E. Buhler, Soft Matter 2011, 7, 4787–4800;
- 9gB. Buchs, W. Fieber, F. Vigouroux-Elie, N. Sreenivasachary, J. M. Lehn, A. Herrmann, Org. Biomol. Chem. 2011, 9, 2906–2919.
- 10
- 10aF. B. L. Cougnon, H. Y. Au-Yeung, G. D. Pantos, J. K. M. Sanders, J. Am. Chem. Soc. 2011, 133, 3198–3207;
- 10bH. Y. Au-Yeung, G. D. Pantos, J. K. M. Sanders, J. Org. Chem. 2011, 76, 1257–1268;
- 10cF. B. L. Cougnon, N. A. Jenkins, G. D. Pantos, J. K. M. Sanders, Angew. Chem. Int. Ed. 2012, 51, 1443–1447; Angew. Chem. 2012, 124, 1472–1476.
- 11
- 11aK. Severin, Curr. Opin. Chem. Biol. 2010, 14, 737–742;
- 11bJ. Montenegro, A. Fin, S. Matile, Org. Biomol. Chem. 2011, 9, 2641–2647;
- 11cT. Takeuchi, J. Montenegro, A. Hennig, S. Matile, Chem. Sci. 2011, 2, 303–307.
- 12
- 12aG. Gasparini, M. Dal Molin, L. J. Prins, Eur. J. Org. Chem. 2010, 2429–2440;
- 12bB. Brisig, J. K. M. Sanders, S. Otto, Angew. Chem. Int. Ed. 2003, 42, 1270–1273; Angew. Chem. 2003, 115, 1308–1311;
- 12cG. Gasparini, L. J. Prins, P. Scrimin, Angew. Chem. Int. Ed. 2008, 47, 2475–2479; Angew. Chem. 2008, 120, 2509–2513;
- 12dM. Matsumoto, D. Estes, K. M. Nicholas, Eur. J. Inorg. Chem. 2010, 1847–1852;
- 12eL. Vial, J. K. M. Sanders, S. Otto, New J. Chem. 2005, 29, 1001–1003;
- 12fR. Kannappan, K. M. Nicholas, ACS Comb. Sci. 2013, 15, 90–100;
- 12gP. Dydio, P.-A. R. Breuil, J. N. H. Reek, Isr. J. Chem. 2013, 53, 61–74.
- 13R. F. Ludlow, S. Otto, Chem. Soc. Rev. 2008, 37, 101–108.
- 14
- 14aR. Blomberg, H. Kries, D. M. Pinkas, P. R. E. Mittl, M. G. Grütter, H. K. Privett, S. L. Mayo, D. Hilvert, Nature 2013, 503, 418–421;
- 14bI. Smirnov, A. Belogurov, Jr., A. Friboulet, P. Masson, A. Gabibov, P.-Y. Renard, Chem.-Biol. Interact. 2013, 203, 196–201;
- 14cP. B. Kapadnis, E. Hall, M. Ramstedt, W. R. J. D. Galloway, M. Welch, D. R. Spring, Chem. Commun. 2009, 538–540;
- 14dF. Tanaka, Chem. Rev. 2002, 102, 4885–4906;
- 14eD. Hilvert, Annu. Rev. Biochem. 2000, 69, 751–793.
- 15For an intermolecular reaction, catalysis in a dynamic molecular network may also be effective, provided that a given species of the network binds both reacting species, hence increasing the local concentrations. See, for example, Ref. [12b].
- 16
- 16aD. Fiedler, R. G. Bergman, K. N. Raymond, Angew. Chem. Int. Ed. 2004, 43, 6748–6751; Angew. Chem. 2004, 116, 6916–6919;
- 16bD. Fiedler, H. van Halbeek, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2006, 128, 10240–10252.
- 17The hydrolysis of the enamonium ion prevents the possibility of product inhibition. In general, our approach is most easily applicable for reactions in which the product does not resemble the transition state.
- 18S. Otto, R. L. E. Furlan, J. K. M. Sanders, J. Am. Chem. Soc. 2000, 122, 12063–12064.
- 19K. R. West, F. Ludlow, P. T. Corbett, P. Besenius, F. M. Mansfeld, P. A. G. Cormack, D. C. Sherrington, J. M. Goodman, M. C. A. Stuart, S. Otto, J. Am. Chem. Soc. 2008, 130, 10834–10835.
- 20Screening with a TSA is nevertheless useful as it correctly predicts the occurrence of transition state binding to the catalyst, even though it cannot be relied on when predicting whether transition state binding is stronger or weaker than substrate binding.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.