Durch Dithienylethen-Einheiten modifizierte Rubyrine†
Zhikuan Zhou
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorDr. Yi Chang
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Search for more papers by this authorDr. Soji Shimizu
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorDr. John Mack
Department of Chemistry, Rhodes University, Grahamstown (Südafrika)
Search for more papers by this authorChristian Schütt
Otto Diels-Institut für Organische Chemie, Universität Kiel (Deutschland)
Search for more papers by this authorProf. Rainer Herges
Otto Diels-Institut für Organische Chemie, Universität Kiel (Deutschland)
Search for more papers by this authorCorresponding Author
Prof. Zhen Shen
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Zhen Shen, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Nagao Kobayashi, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorCorresponding Author
Prof. Nagao Kobayashi
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Zhen Shen, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Nagao Kobayashi, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorZhikuan Zhou
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorDr. Yi Chang
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Search for more papers by this authorDr. Soji Shimizu
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorDr. John Mack
Department of Chemistry, Rhodes University, Grahamstown (Südafrika)
Search for more papers by this authorChristian Schütt
Otto Diels-Institut für Organische Chemie, Universität Kiel (Deutschland)
Search for more papers by this authorProf. Rainer Herges
Otto Diels-Institut für Organische Chemie, Universität Kiel (Deutschland)
Search for more papers by this authorCorresponding Author
Prof. Zhen Shen
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Zhen Shen, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Nagao Kobayashi, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorCorresponding Author
Prof. Nagao Kobayashi
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Zhen Shen, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 (China)
Nagao Kobayashi, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan)
Search for more papers by this authorWir danken für die finanzielle Unterstützung durch das Major State Basic Research Development Program of China (Fördernr. 2013CB922101 und 2011CB808704) und die National Natural Science Foundation of China (Nr. 21371090) für Z.S. sowie für Mittel aus den Grant-in-Aids for Scientific Research on Innovative Areas (25109502, “Stimuli-responsive Chemical Species”), Scientific Research (B) (No. 23350095), and Young Scientist (B) (No. 24750031) des Ministry of Education, Culture, Sports, Science, and Technology (MEXT) von Japan. R.H. und C.S. danken für Unterstützung durch die DFG im Rahmen des SFB 677 “Funktion durch Schalten”. Die Rechnungen wurden am Centre for High Performance Computing in Kapstadt und am Otto Diels-Institut durchgeführt.
Abstract
Zwei stabile, kernmodifizierte Rubyrine mit einer oder zwei Diethienylethen(DTE)-Einheiten (1 und 2) wurden hergestellt. Das Rubyrin 1 mit einer “geschlossenen” DTE-Einheit zeigt 26 π-Aromatizität, während bei Einführung einer “offenen” DTE-Einheit in den Makrocyclus 2 dieser sich als nichtaromatische Verbindung verhält.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201402711_sm_miscellaneous_information.pdf3.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. L. Sessler, D. Seidel, Angew. Chem. 2003, 115, 5292–5333;
10.1002/ange.200200561 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5134–5175;
- 1bH. Furuta, H. Maeda, A. Osuka, Chem. Commun. 2002, 1795–1804;
- 1cM. Stępień, N. Sprutta, L. Latos-Grażyński, Angew. Chem. 2011, 123, 4376–4430;
10.1002/ange.201003353 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 4288–4340;
- 1dT. K. Chandrashekar, S. Venkatraman, Acc. Chem. Res. 2003, 36, 676–691.
- 2
- 2aJ.-Y. Shin, K. S. Kim, M.-C. Yoon, J. M. Lim, Z. S. Yoon, A. Osuka, D. Kim, Chem. Soc. Rev. 2010, 39, 2751–2767;
- 2bM. Bröring, Angew. Chem. 2011, 123, 2484–2486;
10.1002/ange.201007442 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 2436–2438;
- 2cA. Osuka, S. Saito, Chem. Commun. 2011, 47, 4330–4339;
- 2dJ. I. Wu, I. Fernández, P. v. R. Schleyer, J. Am. Chem. Soc. 2013, 135, 315–321.
- 3
- 3aR. Herges, D. Geuenich, J. Phys. Chem. A 2001, 105, 3214–3220;
- 3bD. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758–3772.
- 4
- 4aZ. Gross, G. Golubkov, L. Simkhovich, Angew. Chem. 2000, 112, 4211–4213;
Angew. Chem. Int. Ed. 2000, 39, 4045–4047;
10.1002/1521-3773(20001117)39:22<4045::AID-ANIE4045>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 4bI. Aviv, Z. Gross, Chem. Commun. 2007, 1987–1999.
- 5
- 5aZ. L. Xue, Z. Shen, J. Mack, D. Kuzuhara, H. Yamada, T. Okujima, N. Ono, X. Z. You, N. Kobayashi, J. Am. Chem. Soc. 2008, 130, 16478–16479;
- 5bZ. L. Xue, J. Mack, H. Lu, L. Zhang, X. Z. You, D. Kuzuhara, M. Stillman, H. Yamada, S. Yamauchi, N. Kobayashi, Z. Shen, Chem. Eur. J. 2011, 17, 4396–4407;
- 5cD. Kuzuhara, H. Yamada, Heterocycles 2013, 87, 1209–1240.
- 6
- 6aA. Srinivasan, V. M. Reddy, S. J. Narayanan, B. Sridevi, S. K. Pushpan, M. Ravikumar, T. K. Chandrashekar, Angew. Chem. 1997, 109, 2710–2713;
10.1002/ange.19971092308 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 2598–2601;
- 6bD. Wu, A. B. Descalzo, F. Weik, F. Emmerling, Z. Shen, X.-Z. You, K. Rurack, Angew. Chem. 2008, 120, 199–203; Angew. Chem. Int. Ed. 2008, 47, 193–197;
- 6cI. Simkowa, L. Latos-Grażyński, M. Stępień, Angew. Chem. 2010, 122, 7831–7835;
10.1002/ange.201004015 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 7665–7669;
- 6dI. Grocka, L. Latos-Grażyński, M. Stępień, Angew. Chem. 2013, 125, 1078–1082;
10.1002/ange.201208289 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 1044–1048.
- 7
- 7aJ. L. Sessler, T. Morishima, V. Lynch, Angew. Chem. 1991, 103, 1018–1020; Angew. Chem. Int. Ed. Engl. 1991, 30, 977–980;
- 7bS. Shimizu, J.-Y. Shin, H. Furuta, R. Ismael, A. Osuka, Angew. Chem. 2003, 115, 82–86; Angew. Chem. Int. Ed. 2003, 42, 78–82;
- 7cS. Saito, A. Osuka, Angew. Chem. 2011, 123, 4432–4464; Angew. Chem. Int. Ed. 2011, 50, 4342–4373.
- 8J. E. Reeve, H. A. Collins, K. D. Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, H. L. Anderson, J. Am. Chem. Soc. 2009, 131, 2758–2759.
- 9
- 9aS.-Y. Kee, J. M. Lim, S.-J. Kim, J. Yoo, J.-S. Park, T. Sarma, V. M. Lynch, P. K. Panda, J. L. Sessler, D. Kim, C.-H. Lee, Chem. Commun. 2011, 47, 6813–6815;
- 9bW.-Y. Cha, J. M. Lim, M.-C. Yoon, Y. M. Sung, B. S. Lee, S. Katsumata, M. Suzuki, H. Mori, Y. Ikawa, H. Furuta, A. Osuka, D. Kim, Chem. Eur. J. 2012, 18, 15838–15844.
- 10M.-C. Yoon, J.-Y. Shin, J. M. Lim, S. Saito, T. Yoneda, A. Osuka, D. Kim, Chem. Eur. J. 2011, 17, 6707.
- 11
- 11aS. Mori, A. Osuka, J. Am. Chem. Soc. 2005, 127, 8030–8031;
- 11bS. Shimizu, Y. Tanaka, K. Youfu, A. Osuka, Angew. Chem. 2005, 117, 3792–3795; Angew. Chem. Int. Ed. 2005, 44, 3726–3729;
- 11cT. Yoneda, A. Osuka, Chem. Eur. J. 2013, 19, 7314–7318.
- 12Y. Chang, H. Chen, Z. Zhou, Y. Zhang, C. Schütt, R. Herges, Z. Shen, Angew. Chem. 2012, 124, 12973–12977; Angew. Chem. Int. Ed. 2012, 51, 12801–12805.
- 13
- 13aL. N. Lucas, J. van Esch, R. M. Kellogg, B. L. Feringa, Chem. Commun. 1998, 2313–2314;
- 13bK. A. Green, M. P. Cifuentes, T. C. Corkery, M. Samoc, M. G. Humphrey, Angew. Chem. 2009, 121, 8007–8010; Angew. Chem. Int. Ed. 2009, 48, 7867–7870;
- 13cJ. C.-H. Chan, W. H. Lam, H.-L. Wong, N. Zhu, W.-T. Wong, V. W.-W. Yam, J. Am. Chem. Soc. 2011, 133, 12690–12705;
- 13dS. K. Brayshaw, S. Schiffers, A. J. Stevenson, S. J. Teat, M. R. Warren, R. D. Bennett, I. V. Sazanovich, A. R. Buckley, J. A. Weinstein, P. R. Raithby, Chem. Eur. J. 2011, 17, 4385–4395;
- 13eS. Lee, Y. You, K. Ohkubo, S. Fukuzumi, W. Nam, Angew. Chem. 2012, 124, 13331–13335; Angew. Chem. Int. Ed. 2012, 51, 13154–13158.
- 14
- 14aM. Takeshita, S. Yamaguchi, Chem. Lett. 2011, 40, 646–647;
- 14bH. Jin-nouchi, M. Takeshita, Chem. Eur. J. 2012, 18, 9638–9644.
- 15
- 15aA. Osuka, D. Fujikane, H. Shinmori, S. Kobatake, M. Irie, J. Org. Chem. 2001, 66, 3913–3923;
- 15bB. Gorodetsky, D. Sud, T. B. Norsten, A. J. Myles, N. R. Branda, J. Porphyrins Phthalocyanines 2003, 7, 313–317.
- 16Q. Luo, B. Chen, M. Wang, H. Tian, Adv. Funct. Mater. 2003, 13, 233–239.
- 17
- 17aJ. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney, A. M. Marguerettaz, J. Org. Chem. 1987, 52, 827–836;
- 17bT. D. Lash, D. T. Richter, C. M. Shiner, J. Org. Chem. 1999, 64, 7973–7982;
- 17cT. D. Lash, Eur. J. Org. Chem. 2007, 5461–5481;
- 17dT. D. Lash, D. A. Colby, S. R. Graham, J. Org. Chem. 2004, 69, 8851–8864.
- 18A. Srinivasan, S. K. Pushpan, M. Ravikumar, T. K. Chandrashekar, R. Roy, Tetrahedron 1999, 55, 6671–6680.
- 19Kristallstrukturdaten für 1: C59H40F2N2S4, Mw=985.63, Kristallabmessungen: 0.40×0.40×0.05 mm3, monoklin, C2/c, a=13.741(3), b=18.160(4), c=37.729(8) Å, β=95.668(2)°, V=9369(4) Å3, Z=8, Dber.=1.398 gcm−3, T=100 K, 28692 gemessene Reflexe, 7662 Reflexe mit [I>2s(I)]. R=0.0596, Rw=0.1210, GOF=1.152. CCDC976688 enthält die ausführlichen kristallographischen Daten zu dieser Veröffentlichung. Die Daten sind kostenlos beim Cambridge Crystallographic Data Centre über www.ccdc.cam.ac.uk/data_request/cif erhältlich.
- 20T. Kimura, T. Iwama, T. Namauo, E. Suzuki, T. Fukuda, N. Kobayashi, T. Sasamori, N. Tokitoh, Eur. J. Inorg. Chem. 2011, 888–894.
- 21
- 21aJ. Michl, J. Am. Chem. Soc. 1978, 100, 6801–6811;
- 21bJ. Michl, J. Am. Chem. Soc. 1978, 100, 6812–6818;
- 21cJ. Michl, Pure Appl. Chem. 1980, 52, 1549–1570;
- 21dJ. Michl, Tetrahedron 1984, 40, 3845–3934.
- 22
- 22aU. Höweler, J. W. Downing, J. Fleischhauer, J. Michl, J. Chem. Soc. Perkin Trans. 2 1998, 1101–1117;
- 22bJ. Fleischhauer, U. Höweler, J. Michl, Spectrochim. Acta Part A 1999, 55, 585–606;
- 22cJ. Fleischhauer, U. Höweler, J. Michl, J. Phys. Chem. A 2000, 104, 7762–7775.
- 23
- 23aJ. Mack, M. J. Stillman, N. Kobayashi, Coord. Chem. Rev. 2007, 251, 429–453;
- 23bN. Kobayashi, A. Muranaka, J. Mack, Circular Dichroism and Magnetic Circular Dichroism Spectroscopy for Organic Chemists, Royal Society of Chemistry, Cambridge, 2011.
10.1039/9781849732932 Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.